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Plan of Lecture

1 Linearization around steady state, speed of convergence,
slope of saddle path

2 Some transition experiments in the growth model
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Linearization around Steady State

• Two questions:

• can we say more than “there exists a unique steady state and
the economy converges to it”? Speed of convergence?

• How analyze stability if two- or N-dimensional state x (so that
cannot draw phase diagram)?

• Can answer these questions by analyzing local dynamics close
to steady state
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Linearization around Steady State
• Let y ∈ Rn and the function m : Rn → Rn define a dynamical

system:
ẏ (t) = m(y(t)) for t ≥ 0,

• Let y∗ be a steady state, i.e. 0 = m (y∗)

• Consider a first order approximation of m around y∗ :

ẏ ≈ m(y∗) + m′ (y∗) (y − y∗)

where m′(y∗) is the n × n Jacobian of m evaluated at y∗, i.e.
the matrix with entries ∂mi (y

∗)/∂yj
• Equivalently

˙̂y ≈ Aŷ , ŷ = y − y∗, A = m′(y∗)

• Idea is then to analyze this linear differential equation.

• Analysis is valid globally (i.e. for all Rn) if the system is
indeed linear.

• Alternatively it is valid in a neighborhood of the steady state.
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Linearized Growth Model

• Recall system of two ODEs

ċ =
1

σ
(f ′(k)− ρ− δ)c

k̇ = f (k)− δk − c
(ODE”)

• Let y = (c , k) and do analysis on previous slide

˙̂y ≈ Aŷ , A =

[
∂ċ/∂c ∂ċ/∂k

∂k̇/∂c ∂k̇/∂k

]
, ŷ =

[
c − c∗

k − k∗

]
where the partial derivatives are evaluated at (c∗, k∗)

• Have

A =

[
∂ċ/∂c ∂ċ/∂k

∂k̇/∂c ∂k̇/∂k

]
=

[
0 1

σ f
′′(k∗)c∗

−1 ρ

]

where we used ∂k̇/∂k = f ′(k∗)− δ = ρ
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Properties of Linear Systems
• Theorem (see e.g. Acemoglu, Theorem 7.18) Consider the

following linear differential equation system

˙̂y (t) = Aŷ (t) , ŷ = y − y∗ (∗)
with initial value ŷ(0), and where A is an n × n matrix.
Suppose that ` ≤ n of the eigenvalues of A have negative real
parts. Then, there exists an `-dimensional subspace L of Rn

such that that starting from any ŷ(0) ∈ L, the differential
equation (∗) has a unique solution with ŷ(t)→ 0.

• Proof: next slide

• Interpretation: important thing is to compare number of
negative eigenvalues ` and number of pre-determined state
variables m

• if ` = m (standard case): “saddle-path stable”, unique optimal
trajectory. Neg. eigenvalues govern speed of convergence.

• if ` < m: unstable, y(t) does not converge to steady state.

• if ` > m: multiple optimal trajectories (“indeterminacy”) 6 / 30



Proof of Theorem
• First step is to solve (∗). Also see

http://en.wikipedia.org/wiki/Matrix_differential_equation

• Denote the eigenvalues of A by λ1, ..., λn and the
corresponding eigenvectors by v1, ..., vn.

• Diagonalizing the matrix A we obtain:

A = PΛP−1

• Λ is diagonal matrix with eigenvalues of A, possibly complex,
on its diagonal.

• Matrix P contains the eigenvectors of A, i.e. P = (v1, ..., vn)
(to see this write AP = PΛ or Avi = λivi ) and is invertible

• ignores some technicalities discussed in ch. 6 of SLP book

• Write system as

P−1 ˙̂y (t) = ΛP−1ŷ (t)

⇔ ż (t) = Λz (t) , z(t) = P−1ŷ(t)
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Proof of Theorem

• Since Λ is diagonal żi = λizi (t), i = 1, ..., n, i.e. it can be
solved element by element

zi (t) = cie
λi t

where ci are constants of integration

• We have that ŷ(t) = Pz(t). Using P = (v1, ..., vn) we have

ŷ(t) =
n∑

i=1

cie
λi tvi (∗∗)

• For now, assume all λi are real

• Let λi be such that for i = 1, 2, .., ` we have λi < 0 and for
i = `+ 1, `+ 2, ..., n we have λi ≥ 0. That is, eigenvalues of
A are ordered so that first ` are negative.
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Proof of Theorem

• Q: when does ŷ(t)→ 0? A: initial condition needs to satisfy

ŷ(0) =
n∑

i=1

civi , ci = 0, i = `+ 1, `+ 2, ..., n

• That is, ŷ(t)→ 0 only if ŷ(0) lies in particular subspace of
Rn. Dimension of subspace = # of negative eigenvalues `.

• Exercise: how extend to case where λi can be complex?
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Linearized Growth Model
• Recall

˙̂y ≈ Ay , A =

[
0 1

σ f
′′(k∗)c∗

−1 ρ

]
, ŷ =

[
c − c∗

k − k∗

]
• Let’s look at eigenvalues of A. These satisfy

0 = det(A− λI ) = −λ(ρ− λ) +
1

σ
f ′′(k∗)c∗

0 = λ2 − ρλ+
1

σ
f ′′(k∗)c∗

• This is a simple quadratic with two solutions (“roots”)

λ1/2 =
ρ±

√
ρ2 − 4 1

σ f
′′(k∗)c∗

2

• f ′′(k∗) < 0 so both eigenvalues are real, and λ1 < 0 < λ2

• Have one pre-determined state variable.

• Theorem says: ` = m = 1 ⇒ saddle-path stable
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Linearized Growth Model
• What does this tell us about the time path of capital k(t)?

• From (∗∗), solution to matrix differential equation for growth
model is [

ŷ1(t)
ŷ2(t)

]
≈ c1e

λ1t

[
v11
v12

]
+ c2e

λ2t

[
v21
v22

]
where ŷ1 = c(t)− c∗, ŷ2 = k(t)− k∗ and vi1, vi2 denote
elements of vi

• λ2 > 0⇒ need c2 = 0

c(t)− c∗ ≈ c1e
λ1tv11, k(t)− k∗ ≈ c1e

λ1tv12

• Have initial condition for k(0) = k0 ⇒ c1v11 = k0 − k∗

c(t)− c∗ ≈ v11
v12

eλ1t(k0 − k∗) (1)

k(t)− k∗ ≈ eλ1t(k0 − k∗) (2)

• From (2), know approximate time path for k(t)
• (1) pins down initial consumption (v11 and v12 are known) 11 / 30



Linearization: Speed of Convergence
• Negative eigenvalue λ1 governs speed of convergence

k(t)− k∗ ≈ e−|λ1|t(k0 − k∗)

• Half-life for convergence to steady state

k(t1/2)− k∗ =
1

2
(k0 − k∗) ⇒ t1/2 =

ln(2)

|λ1|
• Formula from previous slide:

λ1 =
ρ−

√
ρ2 − 4 1

σ f
′′(k∗)c∗

2
• Convergence fast (|λ1| large) if

• high f ′′ (strongly diminishing returns)

• low σ (utility ≈ linear, high “intertemp. elasticity of substit.”)

• Will show later: for reasonable parameter values, neoclassical
growth model features very fast speed of convergence, e.g.
something like t1/2 = 5 years.
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Linearization: Speed of Convergence

• Insights also go through with general utility function u(c)

• can show: with general utility function u(c), formula
generalizes to

λ1 =
ρ±

√
ρ2 − 4 f ′′(k∗)c∗

σ(c∗)

2

where

σ(c) ≡ −u′′(c)c

u′(c)

• check: u(c) = c1−σ

1−σ ⇒ σ(c) = σ
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Slope of Saddle Path

• Recall conditions for optimum:

ċ

c
=

1

σ
(f ′(k)− ρ− δ)

k̇ = f (k)− δk − c
(ODE”)

with k(0) = k0 and limT→∞ e−ρT c(T )−σk(T ) = 0.

• Saddle path c(k) defines optimal consumption for each k

• a.k.a. consumption policy function

• For many questions, useful to know slope of saddle path
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Slope of Saddle Path

• Slope of saddle path satisfies

c ′(k) =
dc

dk
=

dc/dt

dk/dt

c ′(k) =
1
σ (f ′(k)− ρ− δ)c(k)

f (k)− δk − c(k)
(∗)

• Digression: (∗) is a non-linear ODE in c(k) that can be solved
numerically

• once solved, know entire dynamics k̇ = f (k)− δk − c(k)

• alternative to shooting algorithm, no issues with transversality

• (∗) can also be derived from continuous-time Bellman
equation (HJB equation)
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Slope of Saddle Path
• Now consider slope of saddle path at steady state c ′(k∗)

c ′(k∗) = lim
k→k∗

c ′(k) = lim
k→k∗

1
σ (f ′(k)− ρ− δ)c(k)

f (k)− δk − c(k)
=

=
1
σ f
′′(k∗)c∗

f ′(k∗)− δ − c ′(k∗)
=

1
σ f
′′(k∗)c∗

ρ− c ′(k∗)

where the third equality follows from L’Hopital’s rule
(http://en.wikipedia.org/wiki/L’H%C3%B4pital’s_rule)

• Rearranging, we see that λ = c ′(k∗) satisfies

−λ(ρ− λ) +
1

σ
f ′′(k∗)c∗ = 0

• Same quadratic as before. Two solutions (“roots”)

λ1/2 =
ρ±

√
ρ2 − 4 1

σ f
′′(k∗)c∗

2
, λ1 < 0 < λ2
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Slope of Saddle Path

• Know c ′(k∗) > 0⇒ slope of saddle path = positive root

c ′(k∗) =
ρ+

√
ρ2 − 4 1

σ f
′′(k∗)c∗

2

• In growth model

• negative eigenvalue of linearized system = speed of
convergence

• positive eigenvalue of linearized system = slope of saddle path

• seems to be a coincidence, same not true in more general
models. Instead slope of saddle path related to eigenvectors.
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Linearization and Perturbation: Relation

• Popular method in economics: perturbation methods

• Some useful references:

• Judd (1996) “Approximation, perturbation, and projection
methods in economic analysis”, Judd’s (1998) book

• Schmitt-Grohe and Uribe (2004)

• Fernandez-Villaverde lecture notes http://economics.sas.

upenn.edu/~jesusfv/Chapter_2_Perturbation.pdf

• Original references from math literature: Fleming (1971),
Fleming and Souganidis (1986)

• Takeaway: linearization around steady state is particular
application of first-order perturbation method

• Why perturbation? Perturbation methods are more general
and there are more powerful theorems
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Linearization and Perturbation: Relation
• Recall dynamical system from beginning of lecture

ẏ(t) = m(y(t)), y(0) = y0 (∗)
• In general, to apply perturbation method need:

1 some known solution of equation, call it y0(t)

2 to express equation as a perturbed version of known solution in
terms of scalar “perturbation parameter”, call it ε

• Application to our system (∗):

1 know solution if initial condition is steady state, y0 = y∗

2 view (∗) as

ẏ(t, ε) = m(y(t, ε)), y(0, ε) = y∗ + εŷ0 (∗∗)
where εŷ0 is initial deviation from steady state

• Key idea of perturbation: look for solution of (∗∗) of form

y(t, ε) = y∗ + εy1(t) + ε2y2(t) + ...

• First-order perturbation: y(t, ε) ≈ y∗ + εy1(t)
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Linearization and Perturbation: Relation
• Let’s implement first-order perturbation: look for solution of

(∗∗) of form
y(t, ε) ≈ y∗ + εy1(t)

• Taylor’s theorem: set

y1(t) =
∂y(t, 0)

∂ε

• Find by differentiating (∗∗) with respect to ε

∂

∂ε
ẏ(t, 0) = m′(y(t, 0))

∂y(t, 0)

∂ε
i.e. ẏ1(t) = m′(y∗)y1(t)

• Recall linearized system from beginning of lecture

˙̂y = Aŷ , A = m′(y∗)

• Hence y1(t) solves same equation as ŷ(t). Linearization is
1st-order perturbation with ε = 1 so that y(t) = y∗ + y1(t)
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Linearization: Discrete Time

• Similar results apply for discrete-time optimal control
problems

• Main difference: it’s about whether eigenvalues are < 1
rather than < 0.

• See Stokey-Lucas-Prescott chapter 6.

• Let y ∈ Rn and the function m : Rn → Rn define a dynamical
system:

yt+1 = m (yt)

• Let y∗ be a steady state, i.e. y∗ = m (y∗)

• Consider a first order approximation of m around y∗ :

yt+1 ≈ m(y∗) + m′ (y∗) (yt − y∗)

ŷt+1 ≈ Aŷt , ŷt = yt − y∗, A = m′(y∗),
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Linearization: Discrete Time

• Theorem Consider the following linear difference equation
system

ŷt+1 = Aŷt , ŷt = yt − y∗ (∗)

with initial value ŷ(0), and where A is an n × n matrix.
Suppose that ` ≤ n of the eigenvalues of A have real parts
that are less than one. Then, there exists an `-dimensional
subspace L of Rn such that that starting from any ŷ0 ∈ L, the
difference equation (∗) has a unique solution with ŷt → 0.

• Proof is exact analogue

• My advice: if you want to linearize a model/do stability
analysis, do it in continuous time

• always works out more nicely

• but be my guest and linearize growth model in discrete time
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Transition Experiments

• Consider growth model with utility and production functions

u(c) =
c1−σ

1− σ
, f (k) = εkα

• Consider following thought experiment

• up until t = 0, economy in steady state

• at t = 0, ε increases permanently to ε′ > ε

• Question: what can we say about time paths of k(t), i(t) and
particularly c(t) as model converges to new steady state?

• consumption increases in long-run, but what about short-run?
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Steady State Effects

• For given ε, steady state capital and consumption are

k∗ =

(
αε

ρ+ δ

) 1
1−α

, c∗ = ε(k∗)α − δk∗

• So both k∗ and c∗ increase. Note also that

c∗

k∗
= ε(k∗)α−1 − δ =

ρ+ δ

α
− δ

which is independent of ε

• But what about transition?

• see phase diagrams on next slides
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Case 1: slope of saddle path < c∗/k∗

consumption increases on impact
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Case 2: slope of saddle path < c∗/k∗

consumption decreases on impact
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Intuition: income vs. substitution effect

• Why can consumption decrease on impact?

• Offsetting income and substitution effects

• income effect: ε ↑⇒ wealthier (PDV or earnings higher)
⇒ eat more

• substitution effect: ε ↑⇒ MPK ↑ = return to saving ↑
⇒ eat less

• In general, overall effect is ambiguous

• “Income vs. substitution effect” is always the right answer!
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When does c(t) decrease on impact?

• Have formula for slope of saddle path

c ′(k∗) =
ρ+

√
ρ2 − 4 1

σ f
′′(k∗)c∗

2

⇒ can say more

• Consider special case δ = 0 (makes algebra easier). Have

αε′(k∗)α−1 = ρ,
c∗

k∗
=
ρ

α

c ′(k∗) =
ρ+

√
ρ2 + 4 1−α

σ αε′(k∗)α−2c∗

2

=
ρ+

√
ρ2 + 4 1−α

σ αε′(k∗)α−1 c∗

k∗

2
=
ρ

2

(
1 +

√
1 +

4

σ

1− α
α

)
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When does c(t) decrease on impact?

• So question is when

c ′(k∗) =
ρ

2

(
1 +

√
1 +

4

σ

1− α
α

)
>
ρ

α
=

c∗

k∗√
α2 +

4

σ
(1− α)α > 2− α

α > σ

• Summary:

• σ > α: income effect dominates ⇒ c(t) increases

• σ < α: subst. effect dominates ⇒ c(t) decreases

• σ = α: income and subst. effects cancel ⇒ c(t) constant

• Exercise: what is the cutoff in general case δ > 0
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Transition Experiments

• Exercise: analogous experiments for other parameter values

• increase in ρ

• increase in δ
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