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Plan of Lecture

@ Linearization around steady state, speed of convergence,
slope of saddle path

® Some transition experiments in the growth model
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Linearization around Steady State

e Two questions:

e can we say more than “there exists a unique steady state and
the economy converges to it"? Speed of convergence?

e How analyze stability if two- or N-dimensional state x (so that
cannot draw phase diagram)?

e Can answer these questions by analyzing local dynamics close
to steady state
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Linearization around Steady State
Let y € R" and the function m : R” — R" define a dynamical
system:

y (t) = m(y(t)) for t >0,
Let y* be a steady state, i.e. 0 = m(y*)
Consider a first order approximation of m around y* :
y=m(y")+m (y)(y = y")

where m’(y*) is the n x n Jacobian of m evaluated at y*, i.e.
the matrix with entries Om;(y*)/0y;
Equivalently

yRAY, g=y—y', A=nm(y")
Idea is then to analyze this linear differential equation.

Analysis is valid globally (i.e. for all R") if the system is
indeed linear.

Alternatively it is valid in a neighborhood of the steady state.
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Linearized Growth Model
e Recall system of two ODEs
.1,
(_:_ S(F(k) = p—d)c
k=f(k)—9dk—c

(ODE”)

e Let y = (c, k) and do analysis on previous slide
A A 0¢/0c 0¢/ok . c—c*
y=Ay, A=| . : , V=

Ok/0c 0k/0k k — k*

where the partial derivatives are evaluated at (c*, k*)
e Have

lac'/fk ac /8k]

0 Lf"(k*)c
dk/dc Ok/dk

-1 p
where we used Ok/dk = f'(k*) — 8 = p
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Properties of Linear Systems

e Theorem (see e.g. Acemoglu, Theorem 7.18) Consider the
following linear differential equation system

y()=Ap(t), y=y—-y" (*)
with initial value y(0), and where A is an n x n matrix.
Suppose that ¢ < n of the eigenvalues of A have negative real
parts. Then, there exists an /-dimensional subspace L of R”

such that that starting from any y(0) € L, the differential
equation () has a unique solution with y(t) — 0.

e Proof: next slide

e Interpretation: important thing is to compare number of
negative eigenvalues ¢ and number of pre-determined state
variables m

e if { = m (standard case): “saddle-path stable”, unique optimal
trajectory. Neg. eigenvalues govern speed of convergence.
e if { < m: unstable, y(t) does not converge to steady state.

e if £ > m: multiple optimal trajectories (“indeterminacy”) 6 /30



Proof of Theorem

First step is to solve (). Also see
http://en.wikipedia.org/wiki/Matrix_differential_equation
Denote the eigenvalues of A by A1,..., A, and the
corresponding eigenvectors by vy, ..., v,.
Diagonalizing the matrix A we obtain:

A= PAP!
A is diagonal matrix with eigenvalues of A, possibly complex,
on its diagonal.

Matrix P contains the eigenvectors of A, i.e. P = (vi, ..., Vp)
(to see this write AP = PA or Av; = \jv;) and is invertible
e ignores some technicalities discussed in ch. 6 of SLP book

Write system as
P71 (6) = AP 19 (1)
& z(t)=Az(t), z(t)=P1y(t)


http://en.wikipedia.org/wiki/Matrix_differential_equation

Proof of Theorem

Since A is diagonal z; = \jzi(t),i =1,...,n, i.e. it can be
solved element by element

zi(t) = cieMit
where ¢; are constants of integration

We have that y(t) = Pz(t). Using P = (v1, ..., vs) we have
n
y(t) = Z cieNity; ()
i=1

For now, assume all \; are real

Let \; be such that for i = 1,2,..,¢ we have A\; < 0 and for
i=0+1,¢042, .. nwehave \; > 0. That is, eigenvalues of
A are ordered so that first ¢ are negative.
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Proof of Theorem

e Q: when does y(t) — 07 A: initial condition needs to satisfy
n
90)=> cvi, ¢=0,i=(+10+2,...n
i=1

e Thatis, y(t) — 0 only if y(0) lies in particular subspace of
R". Dimension of subspace = # of negative eigenvalues /.

e Exercise: how extend to case where \; can be complex?



Linearized Growth Model

Recall

. 0 Lf'(k*)c* A c—c*
yrAy, A= RS

~1 p k— k*

Let's look at eigenvalues of A. These satisfy

_

1
0 =det(A— M) =—A(p—A)+ —F"(k*)c*
g

1
0=\ —p\+ =f"(k*)c*
o
This is a simple quadratic with two solutions ( “roots”)
p+ \/p2 — 411 (fx) e
A =
1/2 5
f"(k*) < 0 so both eigenvalues are real, and A\; < 0 < Ay

Have one pre-determined state variable.

Theorem says: £ = m = 1 = saddle-path stable
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Linearized Growth Model
What does this tell us about the time path of capital k(t)?

From (xx), solution to matrix differential equation for growth

model is

):1(1“) ~ cieMt vin| et V21

(1) V12 V22
where §1 = ¢(t) — ¢*, o = k(t) — k* and vj1, vj2 denote
elements of v;

A >0=need e =0

)\ltvll, k(t) — k* = cle)‘ltvlg

c(t) — c* = qe
Have initial condition for k(0) = ko = c1v11 = ko — k*
c(t) — ¢ ~ AeMt(ky — k¥) (1)
V12
k(t) — k* ~ eMt(kg — k*) (2)

From (2), know approximate time path for k(t)
(1) pins down initial consumption (v11 and vi» are known)
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Linearization: Speed of Convergence
Negative eigenvalue A1 governs speed of convergence
k(t) — k* ~ e M1t (kg — k*)
Half-life for convergence to steady state

. 1 . In(2
k(tl/z)—k :*(ko—k) = t1/2: ’)E]-’)

2

Formula from previous slide:

p— \/P2 _ 4%f”(k*)c*
A = 5

Convergence fast (|A1] large) if

e high f” (strongly diminishing returns)

e low o (utility ~ linear, high “intertemp. elasticity of substit.”)
Will show later: for reasonable parameter values, neoclassical
growth model features very fast speed of convergence, e.g.
something like t;, =5 years.



Linearization: Speed of Convergence

e Insights also go through with general utility function u(c)

e can show: with general utility function u(c), formula

generalizes to

where

e check: u(c) = s

1

2 f//(k*)c*
Pk A G
! 2
__u"(c)c
o(c)=— 7(0)
=o(c)=o0
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Slope of Saddle Path

e Recall conditions for optimum:

= (W)= p9)

¢
C
k=f(k)—dk—c

(ODE")

with k(0) = ko and lim7_,. e ?Tc(T) 7k(T) = 0.

e Saddle path c(k) defines optimal consumption for each k

e a.k.a. consumption policy function

e For many questions, useful to know slope of saddle path
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Slope of Saddle Path

e Slope of saddle path satisfies
dc  dc/dt

/ k = — =
(k)= = ak/dr

(F1(K) = p = D)c(k) "
F(k) — 6k — c(k)

1
(k) =<
e Digression: (x) is a non-linear ODE in c(k) that can be solved
numerically
e once solved, know entire dynamics k = f(k) — ok — c(k)

e alternative to shooting algorithm, no issues with transversality

e (x) can also be derived from continuous-time Bellman
equation (HJB equation)
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Slope of Saddle Path

e Now consider slope of saddle path at steady state ¢’(k*)

1o E . / . %(f/(k)_P_é)C(k) _
(k)= fim (k)= im0 —ok—c(k)
%f”(k*)c* B %fﬁ(k*)C*

(k) =6 —c(k¥)  p—c(k¥)
where the third equality follows from L'Hopital’s rule
(http://en.wikipedia.org/wiki/L’H%C3%B4pital’s_rule)

o Rearranging, we see that \ = ¢/(k*) satisfies
1
~AMp =)+ =f"(k*)c* =0
(o
e Same quadratic as before. Two solutions (“roots”)

p:l:\/p f// k*)c
A1 = : A <0< X
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http://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule

Slope of Saddle Path

e Know ¢’(k*) > 0 = slope of saddle path = positive root

p+\/p fl/ k*) *

e In growth model

negative eigenvalue of linearized system = speed of
convergence
positive eigenvalue of linearized system = slope of saddle path

seems to be a coincidence, same not true in more general
models. Instead slope of saddle path related to eigenvectors.
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Linearization and Perturbation: Relation

e Popular method in economics: perturbation methods

e Some useful references:

e Judd (1996) “Approximation, perturbation, and projection
methods in economic analysis”, Judd’s (1998) book
e Schmitt-Grohe and Uribe (2004)

e Fernandez-Villaverde lecture notes http://economics.sas.
upenn. edu/~jesusfv/Chapter_2_Perturbation.pdf

e Original references from math literature: Fleming (1971),
Fleming and Souganidis (1986)

e Takeaway: linearization around steady state is particular
application of first-order perturbation method

e Why perturbation? Perturbation methods are more general
and there are more powerful theorems
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http://economics.sas.upenn.edu/~jesusfv/Chapter_2_Perturbation.pdf
http://economics.sas.upenn.edu/~jesusfv/Chapter_2_Perturbation.pdf

Linearization and Perturbation: Relation

Recall dynamical system from beginning of lecture

y(t) = m(y(t)), y(0) = (*)
In general, to apply perturbation method need:

@ some known solution of equation, call it y°(t)

@ to express equation as a perturbed version of known solution in
terms of scalar “perturbation parameter”, call it €

Application to our system (x):
@ know solution if initial condition is steady state, yp = y
@ view (x) as
y(t,e) =m(y(t,e)), y(0,e)=y"+eh (%)

where €y is initial deviation from steady state

*

Key idea of perturbation: look for solution of (xx) of form
y(t,e) =y +exn(t) +ya(t) + ..
First-order perturbation: y(t,e) = y* + ey1(t)
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Linearization and Perturbation: Relation

Let's implement first-order perturbation: look for solution of
(*x) of form

y(t.e) = y" +eylt)
Taylor's theorem: set

n(t) = 8}/;2 J

Find by differentiating (*x) with respect to ¢

3(6,0) = ml((,0) 24

e y(t)=m'(y")yl(t)
Recall linearized system from beginning of lecture
y=Ap, A=m(y")

Hence y1(t) solves same equation as y(t). Linearization is
Ist-order perturbation with ¢ =1 so that y(t) = y* + yi(t)
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Linearization: Discrete Time

Similar results apply for discrete-time optimal control
problems

Main difference: it's about whether eigenvalues are < 1
rather than < 0.

See Stokey-Lucas-Prescott chapter 6.

Let y € R" and the function m : R” — R" define a dynamical
system:

Yer1 = m(ye)
Let y* be a steady state, i.e. y* = m(y*)

Consider a first order approximation of m around y* :

Yerr = m(y™) +m' (y*) (ve — y*)
Vel R AV, Ve =Yr — y*, A= m'(y*),
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Linearization: Discrete Time

e Theorem Consider the following linear difference equation

system
Ver1 =A%, =y y" (*)

with initial value y(0), and where A is an n x n matrix.
Suppose that ¢ < n of the eigenvalues of A have real parts
that are less than one. Then, there exists an /-dimensional
subspace L of R" such that that starting from any yg € L, the
difference equation (x) has a unique solution with y; — 0.

e Proof is exact analogue

e My advice: if you want to linearize a model/do stability
analysis, do it in continuous time

e always works out more nicely

e but be my guest and linearize growth model in discrete time



Transition Experiments

e Consider growth model with utility and production functions
l1-o

11—

u(c)

f(k) = ek®

e Consider following thought experiment

e up until t =0, economy in steady state

e at t =0, € increases permanently to &’ > ¢

e Question: what can we say about time paths of k(t),i(t) and
particularly c¢(t) as model converges to new steady state?

e consumption increases in long-run, but what about short-run?
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Steady State Effects

e For given ¢, steady state capital and consumption are

1

QE I—a
k*: * k*a_ék*
<p+5> - e =elk)

e So both k* and c¢* increase. Note also that

c* _ p+o
i k*a 1 _ 7T
k* 6( ) 0 a

J

which is independent of

e But what about transition?

e see phase diagrams on next slides
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Case 1: slope of saddle path < c¢*/k*

consumption increases on impact

‘—T 4_1 V\Slope: c* kX
v\slope: ck*(€),€]
/

 —

slope: ¢[k*(¢),€]

L. [

k(e) k(&)

>
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Case 2: slope of saddle path < c¢*/k*

consumption decreases on impact

€A
J v\slope: c*k*
0] I slope: ¢'[k*(¢),&]
) S slope: ¢[k*(¢),¢]
clk*(e),eV 1/ A
L. I
() k() >k
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Intuition: income vs. substitution effect

Why can consumption decrease on impact?

Offsetting income and substitution effects

e income effect: € T= wealthier (PDV or earnings higher)
= eat more

e substitution effect: ¢ T= MPK 1 = return to saving 1
= eat less

In general, overall effect is ambiguous

“Income vs. substitution effect” is always the right answer!
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When does c¢(t) decrease on impact?

e Have formula for slope of saddle path

p+ \/p2 _ 4%f”(k*)c*

= can say more

e Consider special case 6 = 0 (makes algebra easier). Have

*

/k*a—lz izﬁ
as' (k") P, o

p+ \/p2 + 4= qe! (k)2
- 2
p+ \/p2+4%a6’(k*)“‘1% < 41—a>

= 14 —
2 +0'O(

c’(k*)

NI
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When does c¢(t) decrease on impact?

e So question is when

c’(k*)_g<1+ 1+il;a> >§:;—:
\/a2+i(1—a)a>2—a
a>o
e Summary:

e 0 > «: income effect dominates = c(t) increases
e 0 < « subst. effect dominates = c(t) decreases
e o = «: income and subst. effects cancel = ¢(t) constant

e Exercise: what is the cutoff in general case § > 0
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Transition Experiments

e Exercise: analogous experiments for other parameter values

e increase in p

e increase in §
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