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Outline

1. Diffusion processes

2. Hamilton-Jacobi-Bellman equations in stochastic settings
(without derivation)

3. Ito’s Lemma

4. Kolmogorov Forward Equations
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Diffusion Processes
• A diffusion is simply a continuous-time Markov process (with

continuous sample paths, i.e. no jumps)
• for jumps, use Poisson process: very intuitive, briefly later

• Simplest possible diffusion: standard Brownian motion (sometimes
also called “Wiener process”)

• Definition: a standard Brownian motion is a stochastic process W
which satisfies
W (t + ∆t)−W (t) = εt

√
∆t, εt ∼ N (0, 1), W (0) = 0

• Not hard to see
W (t) ∼ N (0, t)

• Continuous time analogue of a discrete time random walk:
Wt+1 = Wt + εt , εt ∼ N (0, 1)
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Standard Brownian Motion

• Note: mean zero, E(W (t)) = 0...
• ... but blows up Var(W (t)) = t
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Brownian Motion
• Can be generalized

x(t) = x(0) + µt + σW (t)

• Since E(W (t)) = 0 and Var(W (t)) = t
E[x(t)− x(0)] = µt, Var[x(t)− x(0)] = σ2t

• This is called a Brownian motion with drift µ and variance σ2

• Often useful to write this in differential form
• recall ∆W (t) := W (t + ∆t)−W (t) = εt

√
∆t, εt ∼ N (0, 1)

• use notation dW (t) := εt
√
dt, with εt ∼ N (0, 1) and write

dx(t) = µdt + σdW (t)

• This is called a stochastic differential equation
• Analogue of stochastic difference equation:

xt+1 = µ+ xt + σεt , εt ∼ N (0, 1)
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Further Generalizations: Diffusion Processes

• Can be generalized further (suppressing dependence of x , W on t )

dx = µ(x)dt + σ(x)dW

where µ and σ are any non-linear etc etc functions.

• This is called a “diffusion process”

• µ(·) is called the drift and σ(·) the diffusion.

• all results can be extended to the case where they depend on t,
µ(x, t), σ(x, t) but abstract from this for now.

• The amazing thing about diffusion processes: by choosing
functions µ and σ, you can get pretty much any stochastic process
you want (except jumps)
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Example 1: Ornstein-Uhlenbeck Process

• Brownian motion dx = µdt + σdW is not stationary (random
walk). But the following process is

dx = θ(x̄ − x)dt + σdW

• Analogue of AR(1) process, autocorrelation e−θ ≈ 1− θ

xt+1 = θx̄ + (1− θ)xt + σεt

• That is, we just choose

µ(x) = θ(x̄ − x)

and we get a nice stationary process!

• This is called an “Ornstein-Uhlenbeck process”
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Ornstein-Uhlenbeck Process

• Can show: stationary distribution is N
(
x̄ , σ

2

2θ

)
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Example 2: “Moll Process”

• Design a process that stays in the interval [0, 1] and mean-reverts
around 1/2

µ(x) = θ (1/2− x) , σ(x) = σx(1− x)

• That is
dx = θ (1/2− x) dt + σx(1− x)dW

• Note: diffusion goes to zero at boundaries σ(0) = σ(1) = 0 &
mean-reverts⇒ always stay in [0, 1]
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Other Examples

• Geometric Brownian motion:
dx = µxdt + σxdW

x ∈ [0,∞), no stationary distribution:
log x(t) ∼ N ((µ− σ2/2)t, σ2t).

• Feller square root process (finance: “Cox-Ingersoll-Ross”)
dx = θ(x̄ − x)dt + σ

√
xdW

x ∈ [0,∞), stationary distribution is Gamma(γ, 1/β), i.e.
g∞(x) ∝ e−βxxγ−1, β = 2θx̄/σ2, γ = 2θx̄/σ2

• Other processes in Wong (1964), “The Construction of a Class of
Stationary Markoff Processes”
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Stochastic HJB Equations
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Stochastic Optimal Control

• Generic problem:

v (x0) = max
{α(t)}t≥0

E0
∫ ∞
0

e−ρtr (x(t), α(t)) dt

subject to the law of motion for the state

dx(t) = f (x(t), α(t)) dt + σ(x(t))dW (t)

and α (t) ∈ A, for t ≥ 0, x(0) = x0 given

• σ could depend on α as well – easy extension

• Deterministic problem: special case σ(x) ≡ 0

• In general x ∈ RN , α ∈ RM . For now do scalar case.
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Stochastic HJB Equation: Scalar Case

• Claim: the HJB equation is

ρv(x) = max
α∈A

r(x, α) + v ′(x)f (x, α) +
1

2
v ′′(x)σ2(x)

• Here: on purpose no derivation (“cookbook”)

• In case you care, see any textbook, e.g. chapter 2 in Stokey (2008)
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Just for Completeness: Multivariate Case

• Let x ∈ RN , α ∈ RM

• For fixed x , define the N × N covariance matrix
σ2(x) = σ(x)σ(x)′

(this is a function σ2 : RN → RN × RN )
• The HJB equation is

ρv(x) = max
α∈A

r(x, α) +

N∑
i=1

∂v(x)

∂xi
fi(x, α) +

1

2

N∑
i=1

N∑
j=1

∂2v(x)

∂xi∂xj
σ2i j(x)

• In vector notation

ρv(x) = max
α∈A

r(x, α) +∇xv(x) · f (x, α) +
1

2
tr
(
∆xv(x)σ

2(x)
)

• ∇xv(x): gradient of v (dimension N × 1)
• ∆xv(x): Hessian of v (dimension N × N)
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HJB Equation: Endogenous and Exogenous State

• Lots of problems have the form x = (x1, x2)
• x1: endogenous state
• x2: exogenous state

dx1 = f̃ (x1, x2, α)dt

dx2 = µ̃(x2)dt + σ̃(x2)dW

• Special case with

f (x, α) =

[
f̃ (x1, x2, α)

µ̃(x2)

]
, σ(x) =

[
0

σ̃(x2)

]

• Claim: the HJB equation is
ρv(x1, x2) =max

α∈A
r(x1, x2, α) + v1(x1, x2)f̃ (x1, x2, α)

+v2(x1, x2)µ̃(x2) +
1

2
v22(x1, x2)σ̃

2(x2)
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Example: Real Business Cycle Model

v (k0, z0) = max
{c(t)}t≥0

E0
∫ ∞
0

e−ρtu(c(t))dt

subject to
dk = (zF (k)− δk − c)dt

dz = µ̃(z)dt + σ̃(z)dW

for t ≥ 0, k(0) = k0, z(0) = z0 given

Here:
• x1 = k, x2 = z, α = c
• r(x, α) = u(α)

• f (x, α) =
[
x2F (x1)− δx1 − α

µ̃(x2)

]
, σ(x) =

[
0

σ̃(x2)

]
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Example: Real Business Cycle Model

• HJB equation is

ρv(k, z) =max
c
u(c) + vk(k, z)[zF (k)− δk − c]

+ vz(k, z)µ(z) +
1

2
vzz(k, z)σ

2(z)
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Example: Real Business Cycle Model

• Special Case 1: z is a geometric Brownian motion
dz = µzdt + σzdW

ρv(k, z) =max
c
u(c) + vk(k, z)[zF (k)− δk − c]

+ vz(k, z)µz +
1

2
vzz(k, z)σ

2z2

See Merton (1975) for an analysis of this case

• Special Case 2: z is a Feller square root process
dz = θ(z̄ − z)dt + σ

√
zdW

ρv(k, z) =max
c
u(c) + vk(k, z)[zF (k)− δk − c]

+ vz(k, z)θ(z̄ − z) +
1

2
vzz(k, z)σ

2z
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Aside: Poisson Uncertainty

• Simplest way of modeling uncertainty in continuos time:
two-state Poisson process

• zt ∈ {z1, z2} Poisson with intensities λ1, λ2

• Result: HJB equation is

ρvi(k) = max
c
u(c) + v ′i (k)(ziF (k)− δk − c) + λi(vj(k)− vi(k))

for i = 1, 2, j ̸= i
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Special Case: Stochastic AK Model with log Utility

• Preferences: u(c) = log c

• Technology: zF (k) = zk (so maybe “zk model”?)

• Productivity z follows any diffusion
ρv(k, z) =max

c
log c + vk(k, z)(zk − δk − c)

+ vz(k, z)µ(z) +
1

2
vzz(k, z)σ

2(z)

• Claim: Optimal consumption is c = ρk and hence capital follows
dk = (z − ρ− δ)kdt

dz = µ(z)dt + σ(z)dW

• Solution properties? Simply simulate two SDEs forward in time
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Special Case: Stochastic AK Model with log Utility

• Proof: Guess and verify
v(k, z) = ν(z) + κ log k

• FOC:
u′(c) = vk(k, z) ⇔

1

c
=
κ

k
⇔ c =

k

κ
• Substitute into HJB equation

ρ[ν(z) + κ log k ] = log k − logκ+
κ

k
[zk − δk − k/κ]

+ ν′(z)µ(z) +
1

2
ν′′(z)σ2(z)

• Collect terms involving log k ⇒ κ = 1/ρ⇒ c = ρk □

• Remark: log-utility⇒ offsetting income and substitution effects of
future z ⇒ constant savings rate ρ
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General Case: Numerical Solution with FD Method

• Want to solve:

ρv(k, z) =max
c
u(c) + vk(k, z)[zF (k)− δk − c]

+ vz(k, z)µ(z) +
1

2
vzz(k, z)σ

2(z)
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General Case: Numerical Solution with FD Method

It doesn’t matter whether you solve ODEs or PDEs
⇒ everything generalizes

http://www.princeton.edu/~moll/HACTproject/HJB_diffusion_implicit_RBC.m
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General Case: Numerical Solution with FD Method

• Solve on bounded grids ki , i = 1, ..., I and zj , j = 1, ..., J
• Use short-hand notation vi ,j = v(ki , zj). Approximate

vk(ki , zj) ≈
vi+1,j − vi ,j
∆k

or vi ,j − vi−1,j
∆k

vz(ki , zj) ≈
vi ,j+1 − vi ,j
∆z

or vi ,j − vi ,j−1
∆z

vzz(ki , zj) ≈
vi ,j+1 − 2vi ,j + vi ,j−1

(∆z)2

• Discretized HJB

ρvi ,j =u(ci ,j) + vk(ki , zj)(zjF (ki)− δki − ci ,j)

+ vz(ki , zj)µ(zj) +
1

2
vzz(ki , zj)σ

2(zj)

ci ,j =(u
′)−1[vk(ki , zj)]
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Numerical Solution: Boundary Conditions?

• Upwind method in k-dimension⇒ no boundary conditions needed

• Do need boundary conditions in z-dimension

vz(k, z1) = 0 all k ⇒ vi ,0 = vi ,1

vz(k, zJ) = 0 all k ⇒ vi ,J+1 = vi ,J

• These correspond to “reflecting barriers” at lower and upper
bounds for productivity, z1 and zJ (Dixit, 1993)
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General Case: Numerical Solution with FD Method

• Stack value function vi ,j into vector v of length I × J

• I usually stack it as “endogenous state variable first”

v = (v1,1, v2,1, ..., vI,1, v1,2, ..., vI,2, v1,3, ..., vI,J)
′

• here: doesn’t really matter

• End up with system of I × J non-linear equations

ρv = u(v) + A(v)v

• Solve exactly as before

• upwind scheme
• implicit method preferred to explicit method
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Visualization of A (output of spy(A) in Matlab)
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Ito’s Lemma
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Ito’s Lemma

• Let x be a scalar diffusion
dx = µ(x)dt + σ(x)dW

• We are interested in the evolution of y(t) = f (x(t)) where f is any
twice differentiable function

• Lemma: y(t) = f (x(t)) follows

df (x) =

(
µ(x)f ′(x) +

1

2
σ2(x)f ′′(x)

)
dt + σ(x)f ′(x)dW

• Extremely powerful because it says that any (twice differentiable)
function of a diffusion is also a diffusion

• Can also be extended to vectors

• FYI: this is also where the v ′(x)µ(x) + 12v ′′(x)σ2(x) term in the
HJB equation comes from (it’s E[dv(x)]dt )
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Application: Brownian vs. Geometric Brownian Motion

• Let x be a geometric Brownian motion

dx = µxdt + σxdW

• Claim: y = log x is a Brownian motion with drift µ− σ2/2 and
variance σ2

• Derivation: f (x) = log x , f ′(x) = 1/x, f ′′(x) = −1/x2.
By Ito’s Lemma

dy = df (x) =

(
µx(1/x) +

1

2
σ2x2(−1/x2)

)
dt + σx(1/x)dW

=
(
µ− σ2/2

)
dt + σdW

• Note: naive derivation would have used dy = dx/x and hence

dy = µdt + σdW wrong unless σ = 0!
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Just for Completeness: Multivariate Case

• Let x ∈ RN . For fixed x , define the N × N covariance matrix
σ2(x) = σ(x)σ(x)′

• Ito’s Lemma:

df (x) =

 N∑
i=1

µi(x)
∂f (x)

∂xi
+
1

2

N∑
i=1

N∑
j=1

σ2i j(x)
∂2f (x)

∂xixj

 dt
+

N∑
i=1

σi(x)
∂f (x)

∂xi
dWi

• In vector notation

df (x) =

(
∇x f (x) · µ(x) +

1

2
tr
(
∆x f (x)σ

2(x)
))
dt +∇x f (x) · σ(x)dW

• ∇x f (x): gradient of f (dimension m × 1)
• ∆x f (x): Hessian of f (dimension m ×m)
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Kolmogorov Forward Equations
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Kolmogorov Forward Equations

• Let x be a scalar diffusion
dx = µ(x)dt + σ(x)dW, x(0) = x0

• Suppose we’re interested in the evolution of the distribution of x ,
g(x, t), and in particular in the stationary distribution g(x)

• Natural thing to care about especially in heterogenous agent
models

• Example 1: x = wealth
• µ(x) determined by savings behavior and return to

investments
• σ(x) by return risk
• microfound later

• Example 2: x = city size, will cover later
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Kolmogorov Forward Equations

• Fact: Given an initial distribution g(x, 0) = g0(x), g(x, t) satisfies
the PDE

∂g(x, t)

∂t
= −

∂

∂x
[µ(x)g(x, t)] +

1

2

∂2

∂x2
[σ2(x)g(x, t)]

• This PDE is called the “Kolmogorov Forward Equation”

• Note: in math this often called “Fokker-Planck Equation”

• Corollary: if a stationary distribution g(x) exists, it satisfies the ODE

0 = −
d

dx
[µ(x)g(x)] +

1

2

d2

dx2
[σ2(x)g(x)]

• Remark: as usual, stationary distribution defined as “if you start
there, you stay there”

• g(x) s.t. if g(x, t) = g(x), then g(x, τ) = g(x) for all τ ≥ t
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Just for Completeness: Multivariate Case

• Let x ∈ RN

• As before, define the N × N covariance matrix

σ2(x) = σ(x)σ(x)′

• The Kolmogorov Forward Equation is

∂g(x, t)

∂t
= −

N∑
i=1

∂

∂xi
[µi(x)g(x, t)] +

1

2

N∑
i=1

N∑
j=1

∂2

∂x2
[σ2i j(x)g(x, t)]
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Application: Stationary Distribution of RBC Model

• Recall RBC Model
ρv(k, z) =max

c
u(c) + vk(k, z)[zF (k)− δk − c]

+ vz(k, z)µ(z) +
1

2
vzz(k, z)σ

2(z)

• Denote the optimal policy function by
s(k, z) = zF (k)− δk − c(k, z)

• Then the distribution g(k, z, t) solves
∂g(k, z, t)

∂t
=−

∂

∂k
[s(k, z)g(k, z, t)]

−
∂

∂z
[µ(z)g(k, z, t)] +

1

2

∂2

∂z2
[σ2(z)g(k, z, t)]

• Numerical solution with FD method: later
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