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Outline

• Last time: New Keynesian 3 equation model, derived from

micro foundations

• Ignored ZLB (or “liquidity trap”), i(t) ≥ 0.

• This time: optimal policy at ZLB?

• Also optimal fiscal policy.



Advantages of Continuous Time

• Very nice and tractable

• Payoff: very clean results, even though complicated stuff.

• Keep interest rate at zero past liquidity trap

• Engineer output boom, not inflation

• Lots more

• Policy involves optimal switching time, awkward in discrete

time

• Graphical analysis using phase diagrams

• “Aerospace engineering approach” to optimal monetary

policy: central bank controls trajectory of economy.



Model
• Last time: three equation model

ẋ = i − π − r (IS’)

π̇ = ρπ − κx (PC’)

i = i∗ + φπ + φxx (TR’)

• Recall: κ = (ε− 1)(1 + ϕ)/θ = price flexibility

• This time: drop Taylor rule (TR’), replace with optimal

monetary policy

• Also generalize to CRRA utility, σ 6= 1, impose ZLB

ẋ = σ−1(i − π − r)

π̇ = ρπ − κx

i ≥ 0



The Natural Interest Rate

• Have shown last time: if r(t) > 0 for all t

• first-best (x(t), π(t)) = (0, 0) can be attained, e.g. with Taylor

rule with i∗ = r and φ > 1.

• “Divine coincidence”

• This time: liquidity trap scenario:

r(t) =











r , t ∈ [0,T )

r̄ , t ∈ [T ,∞)

where r < 0 < r̄ .

• Why could natural interest rate go negative?

• TFP growth down r = ρ+ Ȧ/A.

• Anything that affects savings behavior ρ (“animal spirits”,...)

• Credit crunch (Guerrieri and Lorenzoni, 2011)



Liquidity Trap: No Commitment

• “No commitment” means central bank benevolent but cannot

credibly announce plans for the future.

• Acts opportunistically at each point in time.

• Will see momentarily: this is a bad thing

• Time inconsistency problem. Classic article: Kydland and

Prescott (1977) “Rules rather than Discretion”

• After the trap, t ∈ [T ,∞): implement first best

(x(t), π(t)) = (0, 0)

• How do this? See last lecture. For example, Taylor rule with

i∗ = r , φ > 1.



Liquidity Trap: No Commitment

• During the trap, t ∈ [0,T ) : i(t) = 0, cannot attain first-best

• Dynamics governed by

ẋ = −σ−1(r + π)

π̇ = ρπ − κx

• Important: terminal condition

(x(T ), π(T )) = (0, 0)



No Commitment
at T: first best x(T)=!(T)=0

before T: binding zero interest i(t)=0

0 −r
π

x

π̇ = 0

ẋ = 0

t = T
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No Commitment

Deflation and Depression...

intuition

too high real interest: too high growth

cumulative effect with T

Proposition. 

Without commitment

As 

x(t) < 0, π(t) < 0 for t < T

x(0), π(0) → −∞

T → ∞



Does Price Flexibility Help? No!
• Recall: κ = (ε− 1)(1 + ϕ)/θ

• θ: scales price adjustment cost function

• Proposition: Higher κ (lower θ) leads to lower x(t) and π(t).

In the limit as κ→ ∞ (θ → 0) we have

x(t), π(t) → −∞

• Intuition: Phillips curve in integral form

π(t) = κ

∫

∞

t

e−ρ(s−t)x(s)ds

• For given negative x(s), s ≥ t, κ ↑ ⇒ π ↓, i.e. more deflation.

• From Euler equation (IS curve)

ẋ = −σ−1(r + π) ↑

• ⇒ x(0) ↓ since x(T ) = 0 fixed.

• Discontinuity? No. π(T ) = 0 suboptimal with κ = ∞.



Elbow Room

• No commitment ⇒ deflation, depression

• Even simple, non-optimal policies make things better.

• Here’s one. For all t ≥ 0 also after trap ends, t > T , set

π(t) = −r > 0, x(t) = −
1

κ
r > 0

• Problem: real interest rate too high.

• Partial fix: inflation forever

• Small positive output gap

• Can check i(t) ≥ 0 for all t.

• Key: be able to commit to something other than

(π(T ), x(T )) = (0, 0)



Optimal Monetary Policy with Commitment

• Planning problem

min
c,π,i

1

2

∫

∞

0
e−ρt

(

x(t)2 + λπ(t)2
)

dt

ẋ(t) = σ−1(i(t)− r(t)− π(t))

π̇(t) = ρπ(t)− κx(t)

i(t) ≥ 0

and x(0), π(0) free.

• Objective function: welfare loss, can be derived as second

order approximation to welfare around zero inflation.

See Gali (2008), Chapter 4, Appendix 1; Woodford (2003)

Proposition 6.4.

• Note: high x bad because work too much (MRS 6= MPL)



Optimal Monetary Policy with Commitment

• Hamiltonian:

H =
1

2
x2 +

1

2
λπ2 + µxσ

−1(i − r − π) + µπ(ρπ − κx)− ψi

• (x , π): states (output gap, inflation)

• (µx , µπ): co-states

• i : control (nominal interest rate)

• ψ ≥ 0: Lagrange mult. on i ≥ 0, compl. slackness ψi = 0.

• Conditions for optimum:

µxσ
−1 = ψ ⇒ µx ≥ 0, µx i = 0

µ̇x = ρµx − x + κµπ

µ̇π = ρµπ − λπ + σ−1µx − ρµπ



Optimal Monetary Policy with Commitment
• Massage a bit

µx ≥ 0, µx i = 0

µ̇x = ρµx − x + κµπ

µ̇π = −λπ + σ−1µx

ẋ = σ−1(i − π − r)

π̇ = ρπ − κx

• Since x(0), π(0) are free, two additional conditions

µx(0) = 0, µπ(0) = 0

• Recall: µx(0) = marginal value of one additional unit of x(0)

and similarly for π(0).

• + two transversality conditions.



Graphical Representation
• Three Phases:

• Phase I: During the Liquidity Trap, t ∈ [0,T )

• Phase II: Just out of the Trap, t ∈ [T , T̂ )

• Phase III: After the Storm, t ∈ [T̂ ,∞)

• Go backwards in time. Draw phase diagrams III,II,I.

• Phase diagrams will be such that there is a unique

(x(0), π(0)) that satisfies transversality conditions.

• By picking a time path for the nominal interest rate, i(t), the

central bank can pick these initial conditions and the

trajectories for (x(t), π(t)), t > 0.

• Trick is stichting together three phase diagrams in right way.

• Note: it’s all about whether (x(t), π(t)) are fixed or free at

t = 0,T , T̂ .



Phase III: After the Storm

• (π(T̂ ), x(T̂ )) inherited from the past, i.e. not free.

• First-best (π(t), x(t)) = (0, 0) generally not feasible

• ZLB not binding: µx = µ̇x = 0.

µ̇x = ρµx − x + κµπ ⇒ x = κµπ

µ̇π = −λπ + σ−1µx ⇒ µ̇π = −λπ

⇒ ẋ = κµ̇π = −κλπ

• Combining with ẋ = σ−1(i − π − r)

i = r + (1− κσλ)π ≡ I (r , π)

• Same interest rate condition as in Clarida, Gali and Gertler

(1999). Property: π = 0 ⇒ i = I (r , 0) = r .



Phase III: After the Storm

• System with optimal control i = I (π, r) = r + (1− κσλ)π

ẋ = −κλπ

π̇ = ρπ − κx

• Draw phase diagram ⇒ saddle path

• Claim: In phase III (when the ZLB is slack)

x(t) = φπ(t), φ ≡
ρ+

√

ρ2 + 4λκ2

2κ

• That is, φ is slope of the saddle path.



0
π

x

x = φπ

Ignoring lower 

bound 

i(t)=I(!(t),r(t))



Phase III: After the Storm
• Claim: Saddle path is

x(t) = φπ(t), φ ≡
ρ+

√

ρ2 + 4λκ2

2κ

• Derivation (more general trick for finding slope of saddle path)

• With optimal control i = I (r , π)

dx/dt = −κλπ

dπ/dt = ρπ − κx

• Saddle path: x(π(t)) such that this holds. Slope:

dx

dπ
=

dx/dt

dπ/dt
=

−κλπ

ρπ − κx(π)

• Guess x(π) = φπ (doesn’t always work, if not use L’Hopital)

φ =
−κλ

ρ− κφ
⇒ −κφ2 + φρ+ κλ = 0

• Solve quadratic, two roots φ, take positive one.



Phase II: Just out of the Trap

• Recall: i(t) = 0 in this phase

• Again (π(T ), x(T )) inherited from the past, i.e. not free.

• System

ẋ = −σ−1(r̄ + π)

π̇ = ρπ − κx

• Same phase diagram as no-commitment case except that

ẋ = 0 locus at π = −r̄ rather than π = −r
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π
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binding

i(t)=0



Phase I: During the Liquidity Trap

• System

ẋ = −σ−1(r + π)

π̇ = ρπ − κx

• Same phase diagram as no-commitment case.

• (x(0), π(0)) free, but (x(T ), π(T )) given.



0 −r

π

x

π̇ = 0

ẋ = 0

x = φπ
during 

trap

i(t)=0



0
π

x

π̇ = 0

x = φπ

Putting it 

all 

together!
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result 1: slack ZLB 

result 2:

result 3: inflation must be positive at some point

result 4: output takes both signs

result 5: inflation may be positive throughout

Main Results

i(t) = I(π(t), r(t))

I(π(t), r(t)) < 0 for t ∈ [t0, t1)

i(t) = 0 for t ∈ [t0, t2) with t1 < t2

I(π, r) ≡ r + (1− κσλ)π



Communication 

What kind of commitment?

needed: policy commitments for t>T...

1. promised targets

2. interest rate and exit inflation 

irrelevant: policy commitments for t<T

x(T ),π(T )

i(t) = 0 for t < T̂

π(T̂ )

T̂ > T



Inflation or Boom?

• Literature: purpose of monetary policy in liquidity trap =

promote inflation.

• Werning: not true, real objective = engineer consumption

boom.

• Paper: three special cases

• Special case 1: if process fully rigid so that inflation is zero,

still want to set i(t) = 0 past trap.

• Special case 3: arbitrary no inflation constraint, π ≤ 0.



#2 Rigid Prices
completely rigid prices

                                     (no commitment)

                               and               

T̂ = T x(t) < 0

x(T ) > 0↑ x(t)

t

x

T

T̂ = T

T̂ > T

x(t) = σ
−1

∫
T̂

t

r(s)ds

T̂ > T



Inflation or Boom?

• Want to set
∫

∞

0
e−ρtx(t)dt = 0

• Current recession and subsequent boom should average out.

• Intuition: lower future interest rates to discourage savings



Avoiding Inflation

0
π

x

x = φπ



Government Spending

• Utility U(C ,N,G )

• Public goods, G , valued in U, resources: C + G = Y .

• Planning problem

min
c,π,i ,g

1

2

∫

∞

0
e−ρt

(

(c(t) + (1− Γ)g(t))2 + λπ(t)2 + ηg(t)2
)

dt

ċ(t) = σ−1(i(t)− r(t)− π(t))

π̇(t) = ρπ(t)− κ(c(t) + (1− Γ)g(t))

i(t) ≥ 0

and x(0), π(0) free.

• c = (C − C ∗)/C ∗ ≈ logC − logC ∗, g = (G − G ∗)/C ∗

• Γ is neoclassical multiplier

• Flexible prices: optimal spending c = −(1− Γ)g



Gap x=c+(1-Γ)g transformation

spending loosens Euler equation

front-loading

Spending

min
x,π,i,g

1

2

∫

∞

0
e−ρt

(

x(t)2 + λπ(t)2 + ηg(t)2
)

dt

ẋ(t) = (1− Γ)ġ(t) + σ
−1(i(t)− r(t)− π(t))

π̇(t) = ρπ(t)− κx(t)

i(t) ≥ 0

x(0), π(0) free.

Proposition. Spending is initially positive. 

But falls over time, and becomes negative.
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Stimulus 

Decomposition

“opportunistic”: static cost-benefit...

low c      low (shadow) wage         higher g

“stimulus”...

attempt to manipulate consumption

g∗(c) ≡ argmaxg U(c, c+ g, g)

ĝ(t) = g(t)− g∗(c(t))



Opportunistic vs. Stimulus Spending

• Decomposition

• Total spending (blue)

• Opportunistic spending (green)

• Stimulus spending (red)
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Stimulus

Planning Problem

stimulus: loosens Phillips Curve

ċ(t) = σ−1(i(t)− r(t)− π(t))

π̇(t) = ρπ(t)− κ (ψc(t) + (1− Γ)ĝ(t))

i(t) ≥ 0,

min
x̂,π,i,ĝ

1

2

∫

∞

0

e−ρt
(

c(t)2 + λ̂π(t)2 + η̂ĝ(t)2
)

dt

c(0),π(0) free.



Stimulus

Proposition. Stimulus:

(a) initially zero;

(b) may be zero throughout;

(c) switches signs: starts positive, then 

negative, or vice versa



Optimal Fiscal Policy: Summary

• Almost all spending opportunistic, stimulus = very small

component

• Opportunistic spending does affect private consumption, by

affecting inflation. “Leaning against the wind” mitigates both

deflations and inflations.

• However, effects are incidental, would have been obtained by

completely myopic policy maker.

• Model not screaming for stimulus



Mixed Commitment

• Monetary: discretionary

• Spending: Commitment up to t = T
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Conclusions 

Liquidity trap

no commitment: deflation and depression

worse with flexible prices

Monetary policy

avoids deflation

commitment important

Fiscal policy

countercyclical

all opportunistic

Mixed commitment

role for extra stimulus

larger if prices are more flexible
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