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Plan of Lecture

Growth model in continuous time

• Hamiltonians: system of differential equations

• Phase diagrams

• Finite difference methods and shooting algorithm
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Growth Model in Continous Time

• Preferences: representative household with utility function
∫

∞

0
e−ρtu(c(t))dt

ρ ≥ 0 = discount rate (as opposed to β = discount factor)

• Technology:

y(t) = f (k(t)), c(t) + i(t) = y(t)

k̇(t) = i(t)− δk(t), c(t) ≥ 0, k(t) ≥ 0

• Endowments: k̂0 of capital at t = 0

• Pareto optimal allocation solves

V (k̂0) = max
c(t)∞

t=0

∫

∞

0
e−ρtu(c(t))dt s.t.

k̇ (t) = f (k(t))− δk(t)− c(t), k(0) = k̂0
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Hamiltonians

• Pretty much all deterministic optimal control problems in

continuous time can be written as

V (x̂0) = max
z(t)∞

t=0

∫

∞

0
e−ρth (x (t) , z (t)) dt

subject to the law of motion for the state

ẋ (t) = g (x (t) , z (t)) and z (t) ∈ Z

for t ≥ 0, x(0) = x̂0 given.

• ρ ≥ 0: discount rate

• x ∈ X ⊆ R
m: state vector

• z ∈ Z ⊆ R
k : control vector

• h : X × Z → R: instantaneous return function
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Example: Growth Model

V
(

k̂0

)

= max
c(t)∞

t=0

∫

∞

0
e−ρtu(c(t))dt s.t.

k̇ (t) = f (k(t))− δk(t) − c(t), k(0) = k̂0

• Here the state is x = k and the control z = c

• h(x , z) = u(z)

• g(x , z) = f (x)− δx − z
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Hamiltonian: General Formulation

• Consider the general optimal control problem two slides back.

• Can obtain necessary and sufficient conditions for an optimum

using the following procedure (“cookbook”)

• Current-value Hamiltonian

H (x , z , λ) = h (x , z) + λg (x , z) .

• λ ∈ R
m: “co-state”
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Hamiltonian: General Formulation

• Necessary and sufficient conditions:

Hz (x (t) , z (t) , λ (t)) = 0

λ̇ (t) = ρλ (t)− Hx (x (t) , z (t) , λ (t))

ẋ (t) = g (x (t) , z (t))

for all t ≥ 0.

• Initial value for state variable(s): x(0) = x̂0.

• Boundary condition for co-state variable(s) λ (t), called

“Transversality condition”

lim
T→∞

e−ρTλ (T ) x (T ) = 0.

• Note: initial value of the co-state variable λ (0) not

predetermined.
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Example: Neoclassical Growth Model

• Recall: h(x , z) = u(z) and g(x , z) = f (x)− δx − z

• Using the “cookbook”

H(k , c , λ) = u(c) + λ[f (k)− δk − c]

• We have

Hc(k , c , λ) = u′(c)− λ

Hk(k , c , λ) = λ(f ′(k)− δ)

• Therefore conditions for optimum are:

λ̇ = λ(ρ+ δ − f ′(k))

k̇ = f (k)− δk − c

u′(c) = λ

(ODE)

with k(0) = k̂0 and limT→∞ e−ρTλ(T )k(T ) = 0.
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Example: Neoclassical Growth Model

• Interpretation: continuous time Euler equation

• In discrete time

λt = βλt+1(f
′(kt+1) + 1− δ)

kt+1 = f (kt) + (1− δ)kt − ct

u′(ct) = λt

• (ODE) is continous-time analogue
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Phase Diagrams

• How analyze (ODE)? In one-dimensional case (scalar x): use

phase-diagram

• Two possible phase-diagrams:

(i) in (λ, k)-space: more general strategy.

(ii) in (c , k)-space: nicer in terms of the economics.

• For (i), use u′(c) = λ or c = (u′)−1(λ) to write (ODE) as

λ̇ = λ(ρ+ δ − f ′(k))

k̇ = f (k)− δk − (u′)−1(λ)
(ODE’)

with k(0) = k0 and limT→∞ e−ρTλ(T )k(T ) = 0.

• Exercise: draw phase-diagram in (λ, k)-space.

10 / 16



Phase Diagrams

• For (ii), assume CRRA utility

u(c) =
c1−σ

1− σ

• Not necessary but makes algebra easier.

c−σ = λ ⇒ −σ log c(t) = log λ(t) ⇒ −σ
ċ

c
=

λ̇

λ

• Therefore write (ODE) as

ċ

c
=

1

σ
(f ′(k)− ρ− δ)

k̇ = f (k)− δk − c

(ODE”)

with k(0) = k0 and limT→∞ e−ρT c(T )−σk(T ) = 0.
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Steady State

• In steady state k̇ = ċ = 0. Therefore

f ′(k∗) = ρ+ δ

c∗ = f (k∗)− δk∗

• Same as in discrete time with β = 1/(1 + ρ).

• For example, if f (k) = Akα, α < 1. Then

k∗ =

(

αA

ρ+ δ

)
1

1−α
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Phase Diagram

• See graph that I drew in lecture by hand or Figure 8.1 in
Acemoglu’s textbook.

• Obtain saddle path.

• Prove stability of steady state.

• Important: saddle path is not a “knife edge” case in the sense
that the system only converges to steady state if (c(0), k(0))
happens to lie on the saddle path and diverges for all other
initial conditions.

• In contrast to the state variable k(t), c(t) is a “jump
variable.” That is, c(0) is free and always adjusts so as to lie
on the saddle path.
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Violations of Transversality Condition

• Question: how do you know that trajectories with c(0) off
the saddle path violate the transversality condition?

• See Acemoglu, chapter 8 “The Neoclassical Growth Model”
section 5 “Transitional Dynamics”

• if c(0) below saddle path, k(t) → kmax and c(t) → 0

• if c(0) above saddle path, k(t) → 0 in finite time while
c(t) > 0. Violates feasibility.

• local analysis/linearization gives same answer. Next lecture.

• notes that most rigorous and straightforward way is to use that
concave problems have unique solution (his Theorem 7.14)
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Numerical Solution: Finite-Diff. Methods

• By far the simplest and most transparent method for

numerically solving differential equations.

• Approximate k(t) and c(t) at N discrete points in the time

dimension, tn, n = 1, ...,N. Denote distance between grid

points by ∆t.

• Use short-hand notation kn = k(tn).

• Approximate derivatives

k̇(tn) ≈
kn+1 − kn

∆t

• Approximate (ODE”) as

cn+1 − cn

∆t

1

cn
=

1

σ
(f ′(kn)− ρ− δ)

kn+1 − kn

∆t
= f (kn)− δkn − cn
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Finite-Diff. Methods/Shooting Algorithm

• Or

cn+1 = ∆tcn
1

σ
(f ′(kn)− ρ− δ) + cn

kn+1 = ∆t(f (kn)− δkn − cn) + kn
(FD)

with k0 = k0 given.

• Exercise: draw phase diagram/saddle path in MATLAB.

• Assume f (k) = Akα, A = 1, α = 0.3, σ = 2, ρ = δ = 0.05,

k0 =
1
2k

∗, ∆t = 0.1, N = 700.

• Algorithm:

(i) guess c0

(ii) obtain (cn, kn), n = 1, ...,N by running (FD) forward in time.

(iii) If the sequence converges to (c∗, k∗), then you have obtained

the correct saddle path. If not, back to (i) and try different c0.

• This is called a “shooting algorithm”
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