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Plan

Lecture 1

1. A benchmark MFG for macroeconomics: the
Aiyagari-Bewley-Huggett (ABH) heterogeneous agent model

2. The ABH model with common noise (“Krusell-Smith”)
3. If time: some interesting extensions of the ABH model

* the “wealthy hand-to-mouth” and marginal propensities to
consume (MPCs)

¢ present bias and self-control (economics meets psychology)
Lecture 2

1. Numerical solution of MFGs with common noise
based on “When Inequality Matters for Macro...”

2. Other stuff...



Recall Stationary MFG, Aiyagari’s Variant

Functions v and g on (a, 00) x (y, ¥) and scalar r satisfy

W, (HJB)

where H(p) := m>aé<{u(c) — pc}, with state constraint a > a
c=

pv =H(8,v) + (wy + ra)d,v + u(y)o,v +

and 0 =09,v(a,y) =0yv(a, y)all a

0= 8u((wy + ra+ H(0))9) — 8,(u(1)9) + 50,(0°(V)g) (P

1:/ / gdady, g>0

r=eOxF(K,L) = Z\/L/K w=e‘0 F(K, L) = Z\/K/

:/ / agdady, L:/ / ygdady (EQ
0 a 0 a

e Coupling through scalars r and w (prices) determined by (EQ)
e Algorithm: guess (r, w), solve (HJB), solve (FP), check (EQ)



Macroeconomic MFGs with Common Noise

¢ This is where the money is!

¢ Can fit 90% of macroeconomics into this apparatus so any
progress would be extremely valuable

¢ To understand setup consider Aiyagari (1994) with stochastic
aggregate productivity, Z, common to all firms

¢ First studied by

¢ Per Krusell and Tony Smith (1998), "Income and Wealth
Heterogeneity in the Macroeconomy”, J of Political Economy

« Wouter Den Haan (1996), “Heterogeneity, Aggregate
Uncertainty, and the Short-Term Interest Rate”, Journal of
Business and Economic Statistics

¢ | anguage: instead of “common noise” economists say
“aggregate shocks” or “aggregate uncertainty”



Macroeconomic MFGs with Common Noise

¢ Households:
max EO/ e Plu(c)dt st
{Ct}:zo 0
dar = (Weye + rray — cp)dt
dyr = u(yr)dt + o(yr)dW;
ar > a
* Firms:

max {erF(Kt, Lt) — I’th — WtLt}
Ke, Lt

dZ; = —60Z:dt +ndB:, common B; for all firms
:>I’t:€Zt8KF(Kt,Lt), Wi = eré‘LF(Kt,Lt)

e Equilibrium:

Ly = / / yg(a, y, t)dady, K= / / ag(a, y, t)dady
0 a 0 a



Macroeconomic MFGs with Common Noise

¢ Households:
max EO/ e Plu(c)dt st
{Ct}:zo 0
dar = (Weye + rray — cp)dt
dyr = u(yr)dt + o(yr)dW;
ar > a
* Firms:

max{erF Kt L )—I’th— WtLt}
Kt Lt

dZ; = —60Z:dt +ndB:, common B; for all firms
:>I’t:€Zt8KF(Kt,Lt), Wi = eré‘LF(Kt,Lt)
e Equilibrium if restrict to stationary y-process with 1st moment = 1:

Li=1 Ki= / / g(a,y, t)dady



MFG System with Common Noise

¢ both g; and v; are now random variables
* dynamic programming notation w.r.t. individual states only
e |, is conditional expectation w.r.t. future (g¢, Z¢)

pve(a,y) =H(Bave(a, y)) + Bave(a, y)(Wey + red) (HJB)
+ u(y)oyve(a, y) + azz(y)@yyvt(a, y)+ ditEr [dvi(a, y)],

Orge(a,y) = — Bs[(wey + rea+ H'(8ave(a, v)))ge(a, y)]

= 8,((Y)9x(2,1)) + 30 (*(1)ar(2. 1)),

1 1
we= Lt TR, ri= Lt R K / ag:(a, y)dady

dZt == —Qtht+ ndBt

(KF)

Note: %Et [dv¢] means limg o E¢[vits — vi]/s — sorry if weird notation



Analogous System for Textbook MFG

e See Cardialaguet-Delarue-Lasry-Lions
https://arxiv.org/abs/1509.02505

e Standard MFG with common noise W,
dXjt = ...+ V2dB; + /2B8dW;
¢ See their equation (8) for MFG system with common noise:

diuy = {—(1 + B)Aw + H(x, Dug) — F(z,my) \/7(11V (v }dt + vy - \/7dI/I/f
in [0,7] x T,

dymy = [(1 + B)Amy + div(mf,DpH(mt, Dut))]dt - div(mt\/ﬁth),
in [0, 7] x T,

ur(r) = G(x,mr), mg = m), in T¢

e “where the map v; is a random vector field that forces the solution
uy of the backward equation to be adapted to the filtration
generated by (W¢)tepo, 77"

* Previous slide is my sloppy version of this for my particular model


https://arxiv.org/abs/1509.02505

Today

¢ A computational method for MFGs with common noise, based on
“When Inequality Matters for Macro...”

e |dea: linearize MFG with common noise Z; around MFG without
common noise Z; = 0

¢ Works beautifully in practice and in many different applications
¢ But we have no idea about the underlying mathematics!

e = Great problem for mathematicians

e Today: will do in terms of our specific example (Krusell-Smith)

* Good exercise for you: work this out for equation (8) in
Cardialaguet-Delarue-Lasry-Lions



Warm-Up: Linearizing Economic Models

e Economists often solve dynamic economic models using
linearization methods

* Explain in context of particularly basic macroeconomic model:
“neoclassical growth model”
« for the moment: no heterogeneity, “representative agent”
o
maxXx / eith(Ct)dt s.t. kt = f(kt) — Ct, kt > 0, Ct+ > 0
{ct}>0 Jo
* ¢;: consumption
e u: utility function, v/ >0, v <0
e p: discount rate
* k;: capital stock, ko = ko given
e f: production function, f' > 0, f” < 0, f'(c0) < p < f'(0)
* Interpretation: a fictitious “social planner” decides how to allocate
production f(k:) between consumption ¢; and investment k;



Warm-Up: Linearizing Economic Models

* You can obviously solve this problem numerically from the HJB
equation: value function v satisfies

pv(k) = max u(c) +v'(k)(f(k) —c) on (0,00)

But suppose you don’t want to do this for some reason
e e.g. don’t know finite difference methods
e or want to know more about optimal k;

¢ Can proceed as follows: differentiate HJB equation w.r.t. k
VI(k)(f(k) — c(k)) = (o — F'(K)V'(k)
Define vy = v/(k¢), evaluate along characteristic k; = f (k) — ¢t
ve = (p— f'(ke))ve
ke = fke) = (0)7H(ve)

(v, k¢) satisfy two ODEs with initial condition ko = kg, and can
also derive terminal condition: lims_se € Ptviks = 0



Warm-Up: Linearizing Economic Models

e Recall (v¢, k¢) satisfy two ODEs
v = (p— f'(ke))ve
ke = f(ke) — (1) (vr)
with kg = ko, tlim e Puike =0 (BOUNDARY)
—00

(ODEs)

Unique stationary (v*, k*) satisfying f'(k*) = p, v* = /'(f(k*))
To understand dynamics: first-order expansion around (v*, k*)

Ut N{ 0 —f”(k*)u*} M m - [Ut—u*]
2(\1: ~ _u”(lc*) 1Y kel Kt © ke — k*

B
Easy to show: eigenvalues (A1, A\p) of Barereal, A\; < 0 < X

Vi ~ At Aot . 2 A
= PR et g1 + e, @ € R° = eigenvectors
t

constants (c1, ¢p) pinned down from (BOUNDARY) = need ¢, =0



Warm-Up: Linearizing Economic Models

¢ | inearization strategy also works with common noise. Consider

o
max/ e Ptu(c)dt st
0

{ct}t>0
ke = e?tf(ks) — ¢t,  dZy = —0Z:dt + ndB; = common noise

* Value function v(k, Z). Differentiate with respect to k:

2
(o~ €2 F'(K)OkV = (e F(K) = c(k, 2))Ohkv — §Z0kzv + 04z zv

e Define vy := 0kv(ke, Z¢). Then Ito’s formula yields:
dl/t = b(kt, Zt)dt + nakzv(kt, Zt)dBt

2
b(kt, Zt) = (eZt f(kt) — Ct)Gka(kt, Zt) — taﬁkzv(kt, Zt) + %szzv(kt, Zt)

t+s t+s
= Vs — Ut = / b(ky, Zy)du + 77/ Okzv(ky, Z,)dB,
t t

1
expanding right-hand side terms = “f& gEt[uHS —vt| = b(ke, Zt)
S



Warm-Up: Linearizing Economic Models

e Recall 2
(o — e?f'(k))Bkv = (e f(k) — c(k, Z))Bkxv — 028z v + —akzzv

Evaluate along characteristic (k¢, Z;) using previous slide
E:[dve] = (p — e“tf'(ke))dt
dke = e“ f(ke) — (V)7 (ve) (%)
dZ; = —0Z,dt + ndB;

with kg = ko, Zo = Zo and a terminal condition for v; (in expect.)
¢ Expansion around stationary point w/o common noise (v*, k*, 0):

Et[dl//\t] I//\t 0 Dt Vi — v*
dk ~B |k | dt+ |0]| dB:, ki | = | ke — k*
dZt Zt n Zt Zt—O

Can show: B € R3*3 has real eigenvalues \; < Xy <0 < A3 =
system of SDEs has unique sol'n satisfying boundary conditions

* Impulse response functions (IRFs): (7, kt Z:), t > 0afterdBy =1



Franck Portier — TSE — Macro I & II — 2011-2012 — Lecture 2 — Real Business Cycle Models

IRF to A Technological Shock

Technology shock
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Franck Portier — TSE — Macro I & II — 2011-2012 — Lecture 2 — Real Business Cycle Models

IRF to A Technological Shock
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Franck Portier — TSE — Macro I & II — 2011-2012 — Lecture 2 — Real Business Cycle Models

A good fit with estimated shocks
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Real Business Cycle (RBC) Model

¢ Aside: this model (neoclassical growth model + common noise in
productivity Z;) with addition of hours worked choice is called the
“Real Business Cycle” (RBC) model

* fits aggregate data surprisingly well
* Finn Kydland and Ed Prescott got a Nobel prize for it

¢ what’s a negative “technology shock”? Do we suddenly forget
how to produce stuff?

* one example is oil price shock, but technology shocks
probably a bit of a stretch



Summary of Linearization Method

1. Compute stationary point without common noise

2. Compute first-order Taylor expansion around stationary point
without common noise

3. Solve linear stochastic differential equations



Key idea: same strategy in MFG with common noise

1. Compute stationary MFG without common noise

2. Compute first-order Taylor expansion around stationary MFG
without common noise

3. Solve linear stochastic differential equations



MFG System with Common Noise

Recall MFG System with Common Noise

pvi(a,y) =H(Bave(a,y)) + Oavi(a, y)(wry + rra) (HJB)
+u(y)dyve(a, y) + Uzéy)anyt(a, y)+ %Et [dve(a, y)l,

0tgt(a,y) = — Ba[(wry + rea+ H'(8ave(a, y)))ge(a, v)]

=8, (1(1)9e(3. 1)) + 38, (0°(1)g:(a. ),

1 1
m= 3P VITK, =3 /Ke K= [ aga.y)taty

dZt = —Qtht+ ndBt

(KF)



Linearization and Discretization: Which Order?

¢ Numerical solution method has two components

* linearization (first-order Taylor expansion) around MFG without
Common noise

* discretization of (v, g) via finite difference method

¢ \What we do:
1. discretization
2. linearization

Reason: don’t understand linearized infinite-dimensional system

* \What one probably should do:
1. linearization
2. discretization

i.e. analyze linearized infinite-dimensional system before
discretizing and putting on computer



Interesting Exercise

e Start with equation (8) in Cardialaguet-Delarue-Lasry-Lions
https://arxiv.org/abs/1509.02505

dyuy = {—(1 + B)Awy + H(x, Duy) — F(z,my) \/7d1v (v }dt + vy - \/>th
in [0,7] x T,

dymy = [(1 + B)Amy + div (mtDpH(mt., Dut))]dt — div(mt\/ﬁth),
in [0,7] x T,

ur(r) = G(x,mr), mg = m), in T4

* | inearize this system around stationary MFG with G = 0

0= —Au+ H(x, Du) in T9
0= —Am+ div(mD,H(x, Du)) inT¢


https://arxiv.org/abs/1509.02505

Linearization: Three Steps

1. Compute stationary MFG without common noise

2. Compute first-order Taylor expansion around stationary MFG
without common noise

3. Solve linear stochastic differential equations



Step 1: Compute stationary MFG w/o0 common noise

2
pv =H(0,v) + (wy + ra)o,v + u(y)o,v + Uz(y)@yyv (HJB*)

0szAWW+wa+HK@mMDfﬁﬂuww)+%®ﬂb%mgﬂﬂﬂ

1 1 o [o¢]
r=-v1/K, w==VK, Kz/ / agdady (EQ")
2 2 0 a



Step 1: Compute stationary MFG w/o0 common noise

Compute using finite difference method, notation: d,v(a;, y;) =~ 0,V

2
o2(v:
PV :H(@av,,j) + (Wyj + ra,-)aav,-,j + /J,(yj)ayv,;j + ;yj)ayyv,‘,j (HJB*)

0=~ 8,((wy + ra-+ H(8,1))9) — 8,(u(1)9) + 30,(0*(¥)) (FP"

1 1 o0 o)
r==v1/K, w=VK, K= / / agdady (EQ7)
2 2 0 a



Step 1: Compute stationary MFG w/o0 common noise

Compute using finite difference method, notation: v = (vy.1, ..., v; )T

ov=u(v)+A(v;p)v, p:=(rw) (HJB*)
0= 0u((wy + ra+ H(8:1))9) = 8,(u(1)9) + 38,,(4(1)g) (FP")

1 o o
r=>y1/K, w= lﬁ, K= / / agdady (EQ")
2 2 0 a



Step 1: Compute stationary MFG w/o0 common noise

Compute using finite difference method, notation: g = (g1.1,....91J) "

v =u(v)+A(v;p)v (HJB¥)

0=A(v:p)'g (FP?)

1 1 oo o0
r= - ]_/K’ w = —\/R, K:/ / agdady (EQ*)
2 2 0 a



Step 1: Compute stationary MFG w/o0 common noise

Compute using finite difference method

ov=u(v)+A(v,p)v (HJBY)
0=A(v;p)' g (FP¥)

p=F(g) (EQ)



Linearization: Three steps

1. Compute stationary MFG without common noise
¢ Yves’ finite difference method

« stationary MFG reduces to sparse matrix equations

2. Compute first-order Taylor expansion around stationary
MFG without common noise

¢ use automatic differentiation routine

3. Solve linear stochastic differential equation



Step 2: Linearize discretized system w common noise

* Discretized system with common noise

1
pve = u(ve) + A (ve;pe) ve + EEt[dvt]
d
dgtt = A (v¢; Pt) gt
p:=F (gt; Zt)

dZt: —Gtht + ndBt



Step 2: Linearize discretized system w common noise

* Discretized system with common noise

1
ove = u (V) + A (vepe) v + EEt[th]
d
dgtt =A (Vt Pt) gt
p: = F(9; Z¢)

dZt: —Gtht + ndBt

e Structure basically the same as

Ee[dve] = (o — e“ f'(ke))dt
dke = eztf(kt) - (U,)fl(l/t)
dZt - *tadt + ndBt

from warm-up exercise



Step 2: Linearize discretized system w common noise

* Discretized system with common noise

1

pve = u(ve) + A (ve;pe) ve + EEt[dvt]

d

dgtt = A (v¢; Pt) gt

p: = F(9t; Z¢)
dZt: —Gtht + ndBt
e ... which we linearized as
Et[dl//\t] /I/\t O Dt l/t — 1/*

dk¢ ~B | k| dt+ |0] dBy, ke | = | ke — k*
dZt Zt Ui Zt Zt‘ -0




Step 2: Linearize discretized system w common noise

* Discretized system with common noise

1
PV = U (Vt) + A (Vt;pt) Vi + EE[—[C]V[—]

d
% = A(Vt;Pt)T gt
p: = F (gt Z¢)

dZt: *tadt + ndBt

* = Linearize in analogous fashion (using automatic differentiation)

E,[dv,] B, 0 B, 07 [ 0

dg: |  |Bgy Bgy By 0 | |G 0

0 |~ |0 B, -1 B,||p: dt+ 1| 9B
dz 0 0 0 -6||z n




Step 2: Linearize discretized system w common noise

¢ Discretized system with common noise

1
ove = u (Vi) + A (vepr) ve + EEt[dvt]
d
% =A (Vt¢Pt)T gt

pt =F (g Z¢)
dZt: —Qtht + ’ndBt

e Can simplify further by eliminating p¢

E¢[dV] B, B.pBpg BpBpz| [V: 0
dg: | = |Bgy Bgg+BgpBpy BgpB,z| |G:| dt+|0]| dB;
dZt 0 0 _9 Zt 77

Only difference to (v, E, Z) system: dimensionality
e rep agent model: dimension 3
e MFG:2x N+ 1,N=1/x J,e.g. =2001if / =50,J =20



Linearization: Three steps

1. Compute stationary MFG without common noise
* Yves’ finite difference method

« stationary MFG reduces to sparse matrix equations

2. Compute first-order Taylor expansion around stationary
MFG without common noise

¢ use automatic differentiation routine

3. Solve linear stochastic differential equation

e moderately-sized systems = can diagonalize system,
compute eigenvalues (typically N + 1 are < 0)

e large systems, e.g. two-asset model from Lecture 1
= dimensionality reduction



Dimensionality Reduction in Step 3

* Use tools from engineering literature: “Model reduction”

¢ Antoulas (2005), “Approximation of Large-Scale Dynamical
Systems”, available at
http://epubs.siam.org/doi/book/10.1137/1.9780898718713

¢ Amsallem and Farhat (2011), Lecture Notes for Stanford
CME345 “Model Reduction”, available at

https://web.stanford.edu/group/frg/course_work/CME345/

* Approximate N-dimensional distribution by projecting onto
k-dimensional subspace of RN with k << N

gt = Y1eX1 + ...+ Ve Xk

¢ Adapt to problems with forward-looking decisions

¢ For details, see “When Inequality Matters for Macro...”


http://epubs.siam.org/doi/book/10.1137/1.9780898718713
https://web.stanford.edu/group/frg/course_work/CME345/

IRFs in Krusell & Smith Model
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e Comparison of full distribution vs. k = 1 approximation
= recovers Krusell & Smith’s result: ok to work with 1D object



IRFs in Krusell & Smith Model

TFP Output

o

®
o
®
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* |nstead two-asset model from Lecture 1 requires kK = 300
= not ok to work with 1D object



Our Method Is Fast, Accurate in Krusell & Smith Model

Our method is fast

w/o Reduction w/ Reduction

Steady State  0.082 sec 0.082 sec
Linearize 0.021 sec 0.021 sec
Reduction X 0.007 sec
Solve 0.14 sec 0.002 sec
Total 0.243 sec 0.112 sec

e JEDC comparison project (2010): fastest alternative ~ 7 minutes

Our method is accurate

Commonnoisen 0.01% 0.1% 0.7% 1% 5%
Den Haan Error 0.000% 0.002% 0.053% 0.135% 3.347%

¢ JEDC comparison project: most accurate alternative ~ 0.16%



Linearizing MFGs with Common Noise: Summary

Method works beautifully in practice ...

e ... and in many applications

But we don’t understand underlying mathematics

Great problem for mathematicians!

Again, from economists’ point of view, MFGs with common noise
is where the money is

Probably want to switch oder:
1. linearize ...

2. ... then discretize and put on computer



Conclusion

Mean field games extremely useful in economics...

... lots of exciting questions involve mean field type interactions...

... but mathematics often pretty challenging, at least for the
average economist

Potentially high payoff from mathematicians working on this!

e Questions? Come talk to me or shoot me an email
moll@princeton.edu


moll@princeton.edu



