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Plan

Lecture 1

1. A benchmark MFG for macroeconomics: the
Aiyagari-Bewley-Huggett (ABH) heterogeneous agent model

2. The ABH model with common noise (“Krusell-Smith”)
3. If time: some interesting extensions of the ABH model

• the “wealthy hand-to-mouth” and marginal propensities to
consume (MPCs)

• present bias and self-control (economics meets psychology)

Lecture 2

1. Numerical solution of MFGs with common noise
based on “When Inequality Matters for Macro...”

2. Other stuff...
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Recall Stationary MFG, Aiyagari’s Variant
Functions v and g on (a,∞)× (y , ȳ) and scalar r satisfy

ρv =H(∂av) + (wy + ra)∂av + µ(y)∂yv +
σ2(y)

2
∂yyv (HJB)

where H(p) := max
c≥0
{u(c)− pc} , with state constraint a ≥ a

and 0 = ∂yv(a, y) = ∂yv(a, ȳ) all a

0 =− ∂a((wy + ra +H′(∂av))g)− ∂y (µ(y)g) +
1

2
∂yy (σ

2(y)g) (FP)

1 =

∫ ∞

0

∫ ∞
a

gdady , g ≥ 0

r =eZ∂KF (K,L) =
1

2
eZ

√
L/K, w = eZ∂LF (K,L) =

1

2
eZ

√
K/L,

K =

∫ ∞

0

∫ ∞
a

agdady , L =

∫ ∞
0

∫ ∞

a

ygdady (EQ)

• Coupling through scalars r and w (prices) determined by (EQ)
• Algorithm: guess (r, w), solve (HJB), solve (FP), check (EQ) 2



Macroeconomic MFGs with Common Noise

• This
is
where
the
money
is!

• Can fit 90% of macroeconomics into this apparatus so any
progress would be extremely valuable

• To understand setup consider Aiyagari (1994) with stochastic
aggregate productivity, Z, common to all firms

• First studied by
• Per Krusell and Tony Smith (1998), ”Income and Wealth

Heterogeneity in the Macroeconomy”, J of Political Economy
• Wouter Den Haan (1996), “Heterogeneity, Aggregate

Uncertainty, and the Short-Term Interest Rate”, Journal of
Business and Economic Statistics

• Language: instead of “common noise” economists say
“aggregate shocks” or “aggregate uncertainty”
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Macroeconomic MFGs with Common Noise

• Households:

max
{ct}t≥0

E0
∫ ∞
0

e−ρtu(ct)dt s.t.

dat = (wtyt + rtat − ct)dt
dyt = µ(yt)dt + σ(yt)dWt

at ≥ a
• Firms:

max
Kt ,Lt

{
eZtF (Kt , Lt)− rtKt − wtLt

}
dZt = −θZtdt + ηdBt , common Bt for all firms
⇒ rt = eZt∂KF (Kt , Lt), wt = eZt∂LF (Kt , Lt)

• Equilibrium:

Lt =

∫ ∞
0

∫ ∞
a

yg(a, y , t)dady , Kt =

∫ ∞
0

∫ ∞
a

ag(a, y , t)dady
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Macroeconomic MFGs with Common Noise

• Households:

max
{ct}t≥0

E0
∫ ∞
0

e−ρtu(ct)dt s.t.

dat = (wtyt + rtat − ct)dt
dyt = µ(yt)dt + σ(yt)dWt

at ≥ a
• Firms:

max
Kt ,Lt

{
eZtF (Kt , Lt)− rtKt − wtLt

}
dZt = −θZtdt + ηdBt , common Bt for all firms
⇒ rt = eZt∂KF (Kt , Lt), wt = eZt∂LF (Kt , Lt)

• Equilibrium if restrict to stationary y -process with 1st moment = 1:

Lt = 1, Kt =

∫ ∞
0

∫ ∞
a

ag(a, y , t)dady
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MFG System with Common Noise
• both gt and vt are now random variables
• dynamic programming notation w.r.t. individual states only
• Et is conditional expectation w.r.t. future (gt , Zt)
ρvt(a, y) =H(∂avt(a, y)) + ∂avt(a, y)(wty + rta) (HJB)

+ µ(y)∂yvt(a, y) +
σ2(y)

2
∂yyvt(a, y) +

1

dt
Et [dvt(a, y)],

∂tgt(a, y) =− ∂a[(wty + rta +H′(∂avt(a, y)))gt(a, y)]

− ∂y (µ(y)gt(a, y)) +
1

2
∂yy (σ

2(y)gt(a, y)),
(KF)

wt =
1

2
eZt

√
1/Kt , rt =

1

2
eZt

√
Kt , Kt =

∫
agt(a, y)dady

dZt = −θZtdt + ηdBt
Note: 1dtEt [dvt ] means lims↓0 Et [vt+s − vt ]/s – sorry if weird notation
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Analogous System for Textbook MFG
• See Cardialaguet-Delarue-Lasry-Lions

https://arxiv.org/abs/1509.02505

• Standard MFG with common noise Wt
dXi ,t = ...+

√
2dBi ,t +

√
2βdWt

• See their equation (8) for MFG system with common noise:p q

$

’

’

’

’

’

&

’

’

’

’

’

%

dtut “
 

´p1` βq∆ut `Hpx,Dutq ´ F px,mtq ´
a

2βdivpvtq
(

dt` vt ¨
a

2βdWt

in r0, T s ˆ T
d,

dtmt “
“

p1` βq∆mt ` div
`

mtDpHpmt,Dutq
˘‰

dt´ divpmt

a

2βdWt

˘

,

in r0, T s ˆ T
d,

uT pxq “ Gpx,mT q, m0 “ mp0q, in T
d

• “where the map vt is a random vector field that forces the solution
ut of the backward equation to be adapted to the filtration
generated by (Wt)t∈[0,T ]”

• Previous slide is my sloppy version of this for my particular model
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Today

• A computational method for MFGs with common noise, based on
“When Inequality Matters for Macro...”

• Idea: linearize MFG with common noise Zt around MFG without
common noise Zt = 0

• Works beautifully in practice and in many different applications

• But we have no idea about the underlying mathematics!

• ⇒ Great problem for mathematicians

• Today: will do in terms of our specific example (Krusell-Smith)

• Good exercise for you: work this out for equation (8) in
Cardialaguet-Delarue-Lasry-Lions
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Warm-Up: Linearizing Economic Models
• Economists often solve dynamic economic models using

linearization methods
• Explain in context of particularly basic macroeconomic model:

“neoclassical growth model”
• for the moment: no heterogeneity, “representative agent”

max
{ct}t≥0

∫ ∞
0

e−ρtu(ct)dt s.t. k̇t = f (kt)− ct , kt ≥ 0, ct ≥ 0

• ct : consumption
• u: utility function, u′ > 0, u′′ < 0
• ρ: discount rate
• kt : capital stock, k0 = k̄0 given
• f : production function, f ′ > 0, f ′′ < 0, f ′(∞) < ρ < f ′(0)

• Interpretation: a fictitious “social planner” decides how to allocate
production f (kt) between consumption ct and investment k̇t
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Warm-Up: Linearizing Economic Models
• You can obviously solve this problem numerically from the HJB

equation: value function v satisfies
ρv(k) = max

c≥0
u(c) + v ′(k)(f (k)− c) on (0,∞)

• But suppose you don’t want to do this for some reason
• e.g. don’t know finite difference methods
• or want to know more about optimal kt

• Can proceed as follows: differentiate HJB equation w.r.t. k
v ′′(k)(f (k)− c(k)) = (ρ− f ′(k))v ′(k)

• Define νt = v ′(kt), evaluate along characteristic k̇t = f (kt)− ct
ν̇t = (ρ− f ′(kt))νt
k̇t = f (kt)− (u′)−1(νt)

• (νt , kt) satisfy two ODEs with initial condition k0 = k̄0, and can
also derive terminal condition: limt→∞ e−ρtνtkt = 0 10



Warm-Up: Linearizing Economic Models
• Recall (νt , kt) satisfy two ODEs

ν̇t = (ρ− f ′(kt))νt
k̇t = f (kt)− (u′)−1(νt)

(ODEs)

with k0 = k̄0, lim
t→∞

e−ρtνtkt = 0 (BOUNDARY)

• Unique stationary (ν∗, k∗) satisfying f ′(k∗) = ρ, ν∗ = u′(f (k∗))
• To understand dynamics: first-order expansion around (ν∗, k∗)[

˙̂νt
˙̂
k t

]
≈

[
0 −f ′′(k∗)ν∗

− 1
u′′(c∗) ρ

]
︸ ︷︷ ︸

B

[
ν̂t
k̂t

]
,

[
ν̂t
k̂t

]
:=

[
νt − ν∗
kt − k∗

]

• Easy to show: eigenvalues (λ1, λ2) of B are real, λ1 < 0 < λ2

⇒
[
ν̂t
k̂t

]
≈ c1eλ1tϕ1 + c2eλ2tϕ2, ϕj ∈ R2 = eigenvectors

• constants (c1, c2) pinned down from (BOUNDARY)⇒ need c2 = 011



Warm-Up: Linearizing Economic Models
• Linearization strategy also works with common noise. Consider

max
{ct}t≥0

∫ ∞
0

e−ρtu(ct)dt s.t.

k̇t = e
Zt f (kt)− ct , dZt = −θZtdt + ηdBt = common noise

• Value function v(k, Z). Differentiate with respect to k :

(ρ− eZf ′(k))∂kv = (eZf (k)− c(k, Z))∂kkv − θZ∂kZv +
η2

2
∂kZZv

• Define νt := ∂kv(kt , Zt). Then Ito’s formula yields:
dνt = b(kt , Zt)dt + η∂kZv(kt , Zt)dBt

b(kt , Zt) := (e
Zt f (kt)− ct)∂kkv(kt , Zt)− θZt∂kZv(kt , Zt) +

η2

2
∂kZZv(kt , Zt)

⇒ νt+s − νt =
∫ t+s

t

b(ku, Zu)du + η

∫ t+s

t

∂kZv(ku, Zu)dBu

expanding right-hand side terms ⇒ lim
s↓0

1

s
Et [νt+s − νt ] = b(kt , Zt)

• ⇒ νt+s − νt =
∫ t+s
t b(ku, Zu)du + η

∫ t+s
t ∂kZv(ku, Zu)dBu

• Expanding these terms, can show that

lim
s↓0

1

s
Et [νt+s − νt ] = b(kt , Zt)
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Warm-Up: Linearizing Economic Models
• Recall
(ρ− eZf ′(k))∂kv = (eZf (k)− c(k, Z))∂kkv − θZ∂kZv +

η2

2
∂kZZv

• Evaluate along characteristic (kt , Zt) using previous slide
Et [dνt ] = (ρ− eZt f ′(kt))dt
dkt = e

Zt f (kt)− (u′)−1(νt)
dZt = −θZtdt + ηdBt

(∗)

with k0 = k̄0, Z0 = Z̄0 and a terminal condition for νt (in expect.)
• Expansion around stationary point w/o common noise (ν∗, k∗, 0):Et [dν̂t ]dk̂t

dZt

 ≈ B
 ν̂tk̂t
Zt

 dt +
00
η

 dBt ,
 ν̂tk̂t
Zt

 =
νt − ν∗kt − k∗
Zt − 0


• Can show: B ∈ R3×3 has real eigenvalues λ1 ≤ λ2 < 0 < λ3 ⇒

system of SDEs has unique sol’n satisfying boundary conditions
• Impulse response functions (IRFs): (ν̂t , k̂t , Zt), t ≥ 0 after dB0 = 113
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IRF to A Technological Shock
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Franck Portier – TSE – Macro I & II – 2011-2012 – Lecture 2 – Real Business Cycle Models 66

IRF to A Technological Shock
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A good fit with estimated shocks
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Real Business Cycle (RBC) Model

• Aside: this model (neoclassical growth model + common noise in
productivity Zt ) with addition of hours worked choice is called the
“Real Business Cycle” (RBC) model

• fits aggregate data surprisingly well

• Finn Kydland and Ed Prescott got a Nobel prize for it

• what’s a negative “technology shock”? Do we suddenly forget
how to produce stuff?

• one example is oil price shock, but technology shocks
probably a bit of a stretch
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Summary of Linearization Method

1. Compute stationary point without common noise

2. Compute first-order Taylor expansion around stationary point
without common noise

3. Solve linear stochastic differential equations

15



Key idea: same strategy in MFG with common noise

1. Compute stationary MFG without common noise

2. Compute first-order Taylor expansion around stationary MFG
without common noise

3. Solve linear stochastic differential equations

16



MFG System with Common Noise

Recall MFG System with Common Noise

ρvt(a, y) =H(∂avt(a, y)) + ∂avt(a, y)(wty + rta) (HJB)

+ µ(y)∂yvt(a, y) +
σ2(y)

2
∂yyvt(a, y) +

1

dt
Et [dvt(a, y)],

∂tgt(a, y) =− ∂a[(wty + rta +H′(∂avt(a, y)))gt(a, y)]

− ∂y (µ(y)gt(a, y)) +
1

2
∂yy (σ

2(y)gt(a, y)),
(KF)

wt =
1

2
eZt

√
1/Kt , rt =

1

2
eZt

√
Kt , Kt =

∫
agt(a, y)dady

dZt = −θZtdt + ηdBt

17



Linearization and Discretization: Which Order?
• Numerical solution method has two components

• linearization (first-order Taylor expansion) around MFG without
common noise

• discretization of (v , g) via finite difference method

• What we do:
1. discretization
2. linearization

Reason: don’t understand linearized infinite-dimensional system

• What one probably should do:
1. linearization
2. discretization

i.e. analyze linearized infinite-dimensional system before
discretizing and putting on computer 18



Interesting Exercise

• Start with equation (8) in Cardialaguet-Delarue-Lasry-Lions
https://arxiv.org/abs/1509.02505 p q

$

’

’

’

’

’

&

’

’

’

’

’

%

dtut “
 

´p1` βq∆ut `Hpx,Dutq ´ F px,mtq ´
a

2βdivpvtq
(

dt` vt ¨
a

2βdWt

in r0, T s ˆ T
d,

dtmt “
“

p1` βq∆mt ` div
`

mtDpHpmt,Dutq
˘‰

dt´ divpmt

a

2βdWt

˘

,

in r0, T s ˆ T
d,

uT pxq “ Gpx,mT q, m0 “ mp0q, in T
d

• Linearize this system around stationary MFG with β = 0{
0 = −∆u +H(x,Du) in Td

0 = −∆m + div(mDpH(x,Du)) in Td

19
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Linearization: Three Steps

1. Compute stationary MFG without common noise

2. Compute first-order Taylor expansion around stationary MFG
without common noise

3. Solve linear stochastic differential equations

20



Step 1: Compute stationary MFG w/o common noise

ρv =H(∂av) + (wy + ra)∂av + µ(y)∂yv +
σ2(y)

2
∂yyv (HJB∗)

0 =− ∂a((wy + ra +H′(∂av))g)− ∂y (µ(y)g) +
1

2
∂yy (σ

2(y)g) (FP∗)

r =
1

2

√
1/K, w =

1

2

√
K, K =

∫ ∞
0

∫ ∞
a

agdady (EQ∗)
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Step 1: Compute stationary MFG w/o common noise

Compute using finite difference method, notation: ∂av(ai , yj) ≈ ∂avi ,j

ρvi ,j =H(∂avi ,j) + (wyj + rai)∂avi ,j + µ(yj)∂yvi ,j +
σ2(yj)

2
∂yyvi ,j (HJB∗)

0 =− ∂a((wy + ra +H′(∂av))g)− ∂y (µ(y)g) +
1

2
∂yy (σ

2(y)g) (FP∗)

r =
1

2

√
1/K, w =

1

2

√
K, K =

∫ ∞
0

∫ ∞
a

agdady (EQ∗)
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Step 1: Compute stationary MFG w/o common noise

Compute using finite difference method, notation: v = (v1,1, ..., vI,J)T

ρv =u (v) + A (v;p) v, p := (r, w) (HJB∗)

0 =− ∂a((wy + ra +H′(∂av))g)− ∂y (µ(y)g) +
1

2
∂yy (σ

2(y)g) (FP∗)

r =
1

2

√
1/K, w =

1

2

√
K, K =

∫ ∞
0

∫ ∞
a

agdady (EQ∗)
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Step 1: Compute stationary MFG w/o common noise

Compute using finite difference method, notation: g = (g1,1, ..., gI,J)T

ρv =u (v) + A (v;p) v (HJB∗)

0 =A (v;p)T g (FP∗)

r =
1

2

√
1/K, w =

1

2

√
K, K =

∫ ∞
0

∫ ∞
a

agdady (EQ∗)
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Step 1: Compute stationary MFG w/o common noise

Compute using finite difference method

ρv =u (v) + A (v;p) v (HJB∗)

0 =A (v;p)T g (FP∗)

p =F (g) (EQ∗)

21



Linearization: Three steps

1. Compute stationary MFG without common noise

• Yves’ finite difference method
• stationary MFG reduces to sparse matrix equations

2. Compute first-order
Taylor
expansion around
stationary
MFG without
common
noise

• use automatic differentiation routine

3. Solve linear stochastic differential equation

22



Step 2: Linearize discretized system w common noise

• Discretized system with common noise

ρvt = u (vt) + A (vt ;pt) vt +
1

dt
Et [dvt ]

dgt
dt
= A (vt ;pt)

T gt

pt = F (gt;Zt)

dZt= −θZtdt + ηdBt

•

23



Step 2: Linearize discretized system w common noise

• Discretized system with common noise

ρvt = u (vt) + A (vt ;pt) vt +
1

dt
Et [dvt ]

dgt
dt
= A (vt ;pt)

T gt

pt = F (gt;Zt)

dZt= −θZtdt + ηdBt

• Structure basically the same as

Et [dνt ] = (ρ− eZt f ′(kt))dt
dkt = e

Zt f (kt)− (u′)−1(νt)
dZt = −θZtdt + ηdBt

from warm-up exercise
23



Step 2: Linearize discretized system w common noise

• Discretized system with common noise

ρvt = u (vt) + A (vt ;pt) vt +
1

dt
Et [dvt ]

dgt
dt
= A (vt ;pt)

T gt

pt = F (gt;Zt)

dZt= −θZtdt + ηdBt

• ... which we linearized asEt [dν̂t ]dk̂t
dZt

 ≈ B
 ν̂tk̂t
Zt

 dt +
00
η

 dBt ,
 ν̂tk̂t
Zt

 =
νt − ν∗kt − k∗
Zt − 0



23



Step 2: Linearize discretized system w common noise

• Discretized system with common noise

ρvt = u (vt) + A (vt ;pt) vt +
1

dt
Et [dvt ]

dgt
dt
= A (vt ;pt)

T gt

pt = F (gt;Zt)

dZt= −θZtdt + ηdBt

• ⇒ Linearize in analogous fashion (using automatic differentiation)
Et [d v̂t ]
d ĝt
0

dZt

 =

Bvv 0 Bvp 0

Bgv Bgg Bgp 0

0 Bpg −I BpZ
0 0 0 −θ


︸ ︷︷ ︸

B


v̂t
ĝt
p̂t
Zt

 dt +

0

0

0

η

 dBt
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Step 2: Linearize discretized system w common noise
• Discretized system with common noise

ρvt = u (vt) + A (vt ;pt) vt +
1

dt
Et [dvt ]

dgt
dt
= A (vt ;pt)

T gt

pt = F (gt;Zt)

dZt= −θZtdt + ηdBt

• Can simplify further by eliminating p̂tEt [d v̂t ]d ĝt
dZt

 =
Bvv BvpBpg BvpBpZ
Bgv Bgg + BgpBpg BgpBpZ
0 0 −θ

 v̂tĝt
Zt

 dt+
00
η

 dBt
Only difference to (ν̂t , k̂t , Zt) system: dimensionality

• rep agent model: dimension 3
• MFG: 2× N + 1, N = I × J, e.g. = 2001 if I = 50, J = 20 23



Linearization: Three steps

1. Compute stationary MFG without common noise
• Yves’ finite difference method
• stationary MFG reduces to sparse matrix equations

2. Compute first-order
Taylor
expansion around
stationary
MFG without
common
noise

• use automatic differentiation routine

3. Solve linear stochastic differential equation
• moderately-sized systems⇒ can diagonalize system,

compute eigenvalues (typically N + 1 are < 0)
• large systems, e.g. two-asset model from Lecture 1
=⇒ dimensionality reduction

24



Dimensionality Reduction in Step 3

• Use tools from engineering literature: “Model reduction”
• Antoulas (2005), “Approximation of Large-Scale Dynamical

Systems”, available at
http://epubs.siam.org/doi/book/10.1137/1.9780898718713

• Amsallem and Farhat (2011), Lecture Notes for Stanford
CME345 “Model Reduction”, available at
https://web.stanford.edu/group/frg/course_work/CME345/

• Approximate N-dimensional distribution by projecting onto
k-dimensional subspace of RN with k << N

gt ≈ γ1tx1 + ...+ γktxk
• Adapt to problems with forward-looking decisions

• For details, see “When Inequality Matters for Macro...”
25
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IRFs in Krusell & Smith Model
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• Comparison of full distribution vs. k = 1 approximation
=⇒ recovers Krusell & Smith’s result: ok to work with 1D object
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IRFs in Krusell & Smith Model
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• Instead two-asset model from Lecture 1 requires k = 300
=⇒ not ok to work with 1D object
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Our Method Is Fast, Accurate in Krusell & Smith Model

Our
method
is
fast

w/o
Reduction w/
Reduction
Steady State 0.082 sec 0.082 sec
Linearize 0.021 sec 0.021 sec
Reduction × 0.007 sec
Solve 0.14 sec 0.002 sec
Total 0.243 sec 0.112 sec

• JEDC comparison project (2010): fastest alternative ≈ 7 minutes

Our
method
is
accurate

Common noise η 0.01% 0.1% 0.7% 1% 5%
Den Haan Error 0.000% 0.002% 0.053% 0.135% 3.347%

• JEDC comparison project: most accurate alternative ≈ 0.16%
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Linearizing MFGs with Common Noise: Summary

• Method works beautifully in practice ...

• ... and in many applications

• But we don’t understand underlying mathematics

• Great problem for mathematicians!

• Again, from economists’ point of view, MFGs with common noise
is where the money is

• Probably want to switch oder:

1. linearize ...
2. ... then discretize and put on computer
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Conclusion

• Mean field games extremely useful in economics...

• ... lots of exciting questions involve mean field type interactions...

• ... but mathematics often pretty challenging, at least for the
average economist

• Potentially high payoff from mathematicians working on this!

• Questions? Come talk to me or shoot me an email
moll@princeton.edu
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