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New Keynesian Model

• New Keynesian model = RBC model with sticky prices

• References:

• Gali (2008): most accessible intro

• Woodford (2003): New Keynesian bible

• Clarida, Gali and Gertler (1999): most influential article

• Gali and Monacelli (2005): small open economy version
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Why Should You Care?

• Simple framework to think about relationship between monetary
policy, inflation and the business cycle

• RBC model: cannot even think about these issues! Real variables
are completely separate from nominal variables (“monetary
neutrality”, “classical dichotomy”)

• Corollary: monetary policy has no effect on any real variables
• Sticky prices break “monetary neutrality”
• Workhorse model at central banks (see Fed presentation

https://www.dropbox.com/s/74x17k3pgq1h5g2/MacroModelsAtTheFed.pdf?dl=0)
• Makes some sense of newspaper statements like: “a boom leads

the economy to overheat and creates inflationary pressure”
• Some reason to believe that “demand shocks” (e.g. consumer

confidence, animal spirits) may drive business cycle. Sticky prices
= one way to get this story off the ground.
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Outline

(1) Model with flexible prices

(2) Model with sticky prices
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Setup: Flexible Prices

• Households maximize∫ ∞
0

e−ρt
{
logC(t)−

N(t)1+φ

1 + φ

}
dt

subject to
PC + Ḃ = iB +WN

• C: consumption
• N: labor
• P : price level
• B: bonds
• i : nominal interest rate
• W : nominal wage
• Note: no capital
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Households

• Hamiltonian

H(B,C,N, λ) = logC −
N1+φ

1 + φ
+ λ[iB +WN − PC]

• Conditions for optimum
λ̇ = ρλ− λi

1

C
= λP ⇒

Ċ

C
= −

λ̇

λ
−
Ṗ

P
Nφ = λW

• Defining the inflation rate π = Ṗ /P
Ċ

C
= i − π − ρ

CNφ =
W
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Firms – Final Goods Producer

• A competitive final goods producer aggregates a continuum of
intermediate inputs

Y =

(∫ 1
0

y
ε−1
ε

j dj

) ε
ε−1

• Cost minimization⇒ demand for intermediate good j

yj(pj) =
(pj
P

)−ε
Y

where

P =

(∫ 1
0

p1−εj dj

) 1
1−ε

• For a derivation see the Technical Appendix of
http://www.crei.cat/people/gali/pdf_files/monograph/slides-ch3.pdf
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Firms – Intermediate Goods Producers

• Continuum of monopolistically competitive intermediate goods
producers j ∈ [0, 1].

• Production uses labor only
yj(t) = A(t)nj(t).

• Solve (drop j subscripts for simplicity)

max
p

p

(
p

P (t)

)−ε
Y (t)−

W (t)

A(t)

(
p

P (t)

)−ε
Y (t)

• Solution
p(t) = P (t) =

ε

ε− 1
W (t)

A(t)

where P = pj follows because all producers are identical.
8



Equilibrium with Flexible Prices

• Market clearing:
C = AN

• Combining with household FOC CNφ = W/P and P = ε
ε−1W/A

C = Y = A

(
ε

ε− 1

) −1
1+φ

• Note: distortion from monopolistic competition

• Back out real interest rate from

r = i − π = ρ−
Ċ

C
= ρ+

Ȧ

A
= ρ+ g
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Some Notable Features

• Like an RBC model, this model features “monetary neutrality”
http://lmgtfy.com/?q=monetary+neutrality

• Equivalently: there is a “classical dichotomy”
http://lmgtfy.com/?q=classical+dichotomy

• Real variables (C(t), Y (t), N(t),W (t)/P (t), r(t)) are determined
completely separately from nominal variables
(P (t),W (t), π(t), i(t))

• In fact, P (t) and π(t) are not even determined in the absence of a
description of a determination of the economy’s money stock (e.g.
through monetary policy). But this doesn’t matter for real variables

• As a corollary, monetary policy has no effect on real variables
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Sticky Prices

• Everything same except intermediate goods producers
• Per period profits are still

Πt(p) = p

(
p

P (t)

)−ε
Y (t)−

W (t)

A(t)

(
p

P (t)

)−ε
Y (t)

• But now have to pay quadratic price adjustment cost

Θt

(
ṗ

p

)
=
θ

2

(
ṗ

p

)2
P (t)Y (t)

• Optimal control problem:

V0(p0) = max
p(t),t≥0

∫ ∞
0

e−
∫ t
0 i(s)ds

{
Πt(p(t))−Θt

(
ṗ(t)

p(t)

)}
dt

• θ: degree of price stickiness
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Comparison to Literature

• Note: my formulation uses quadratic price adjustment costs as in
Rotemberg (1982)

• Different from standard Calvo (1983) pricing formulation: allowed
to change price at Poisson rate α

• I like Rotemberg better because pricing is state dependent as
opposed time dependent (“Calvo fairy”)

• Closer to “menu cost” models

• Many other papers, e.g. Schmitt-Grohe and Uribe (2004),
Fernandez-Villaverde et al. (2011) also use Rotemberg

• I also assume that adjustment costs are paid as a transfer to
consumers, T = Θt(π) = (θ/2)π2PY . Just a trick to eliminate real
resource costs of inflation (Θt(π) ≈ 0 anyway)
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Optimal Price Setting

• Hamiltonian (state: p, control: ṗ, co-state: η):

H(p, ṗ, η) = p
( p
P

)−ε
Y −

W

A

( p
P

)−ε
Y −

θ

2

(
ṗ

p

)2
PY + ηṗ

• Conditions for optimum

θ
ṗ

p

P

p
Y = η

η̇ = iη −

[
(1− ε)

( p
P

)−ε
Y + ε

W

p

1

A

( p
P

)−ε
Y + θ

(
ṗ

p

)2 P
p
Y

]
.

• Symmetric equilibrium: p = P
θπY = η

η̇ = iη −
[
(1− ε)Y + ε

W

P

1

A
Y + θπ2Y

]
.
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Optimal Price Setting

• Recall the FOC: θπY = η. Differentiate with respect to time

θπ̇Y + θπẎ = η̇

• Substitute into equation for co-state and rearrange

Lemma
The price setting of firms implies that the inflation rate π = Ṗ /P is
determined by(

i − π −
Ẏ

Y

)
π =

ε− 1
θ

(
ε

ε− 1
W

P

1

A
− 1

)
+ π̇
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Optimal Price Setting in Equilibrium

• In equilibrium C = Y and Euler equation

Ẏ

Y
=
Ċ

C
= i − π − ρ

• Substitute into expression on previous slide⇒ Inflation determined
by

ρπ =
ε− 1
θ

(
ε

ε− 1
W

P

1

A
− 1

)
+ π̇. (∗)

• In integral form (check that differentiating gives back above)

π(t) =
ε− 1
θ

∫ ∞
t

e−ρ(s−t)
(

ε

ε− 1
W (s)

P (s)

1

A(s)
− 1

)
ds

• Compare with equation (16) in Chapter 3.3. of Gali’s book and
expression just below.
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Optimal Price Setting in Equilibrium

• Inflation determined by

π(t) =
ε− 1
θ

∫ ∞
t

e−ρ(s−t)
(

ε

ε− 1
W (s)

P (s)

1

A(s)
− 1

)
ds

• Intuition: term in brackets = marginal payoff to a firm from
increasing its price

Π′t(P (t)) = (ε− 1)Y (t)
(

ε

ε− 1
W (t)

P (t)

1

A(t)
− 1

)
• Positive whenever P less than optimal markup ε

ε−1 over marginal
cost W/A

• With flexible prices, θ = 0: Π′t(P (t)) = 0 for all t, P = ε
ε−1

W
A

• With sticky prices, θ > 0: π = PDV of all future Π′t(P (t))
• Adjustment cost is convex. So if expect reason to adjust in the

future – e.g. W (t)/A(t) ↑ – already adjust now
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IS Curve and Phillips Curve

• Call outcomes under flexible prices, θ = 0, “natural” output Y n and
“natural” real interest rate. Recall

Y n = A

(
ε

ε− 1

) −1
1+φ

,
Ẏ n

Y n
= r − ρ, r = ρ+

Ȧ

A

• Define output gap: X = Y/Y n. Recall Euler equation under sticky
prices

Ẏ

Y
= i − π − ρ

• Euler equation in terms of output gap Ẋ/X = Ẏ /Y − Ẏ n/Y n

Ẋ

X
= i − π − r

• This is basically an IS curve
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IS Curve and Phillips Curve

• Can obtain “Phillips Curve” in similar way. Recall

P n =
ε

ε− 1
W n

A
⇒

W

P

1

A
=

W/P

W n/P n

• Equation for inflation (∗) becomes

ρπ =
ε− 1
θ

W/P −W n/P n

W n/P n
+ π̇.

• From FOC CNφ = W
P , and mkt clearing C = Y,N = Y/A

W/P

W n/P n
=

(
Y

Y n

)1+φ
= X1+φ.
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IS Curve and Phillips Curve

• Relation between inflation and output gap: “New Keynesian
Phillips Curve”

ρπ =
ε− 1
θ

(
X1+φ − 1

)
+ π̇

• In integral form

π(t) =
ε− 1
θ

∫ ∞
t

e−ρ(s−t)
(
X(s)1+φ − 1

)
ds

• Inflation high when future output gaps are high, i.e. when economy
“overheats”
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Three Equation Model

• Recall: IS curve and Phillips curve

Ẋ

X
= i − π − r (IS)

ρπ =
ε− 1
θ

(
X1+φ − 1

)
+ π̇ (PC)

• To close model: Taylor rule

i = i∗ + ϕπ + ϕx logX (TR)

• “Three equation model,” see modern undergraduate textbooks
(e.g. Carlin and Soskice)

• Substitute (TR) into (IS)⇒ system of two ODEs in (π,X), analyze
with phase diagram
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Three Equation Model in Literature

• Literature uses log-linearization all over the place
• Obtain exact analogues by defining

x := logX = log Y − log Y n

• Using that for small x (Taylor-series)

X1+φ − 1 = e(1+φ)x − 1 ≈ (1 + φ)x

• and defining κ := (ε− 1)(1 + φ)/θ

ẋ = i − π − r (IS’)
ρπ = κx + π̇ (PC’)
i = i∗ + ϕπ + ϕxx (TR’)

• Exact continuous time analogues of (21), (22), (25) in Chapter 3 of
Gali’s book, same as in Werning (2012)
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Phase Diagrams

• For simplicity, assume ϕx = 0. Makes some math easier.
• Also ignore ZLB, i ≥ 0 (see Werning paper on reading list).
• Substitute (TR’) into (IS’)

ẋ = i∗ − r + (ϕ− 1)π
π̇ = ρπ − κx

(ODE)

• See phase diagrams on next slide.
• Important: both π and x are jump-variables. No state variables.
• Two cases:

• ϕ > 1: unique equilibrium. “Taylor principle”: i increases more
than one-for-one with π so that also real rates increase.

• ϕ < 1: equilibrium indeterminacy
• From now assume ϕ > 1
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Phase Diagram with ϕ > 1
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Phase Diagram with ϕ < 1

Homework 3
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Rigorous Analysis of Uniqueness/Determinacy
• Examine eigenvalues of system (ODE). For intro see here:

http://www.princeton.edu/~moll/ECO503Web/Lecture4_ECO503.pdf

• Consider case i∗ = r ⇒ st. st. = (π∗, x∗) = (0, 0). Write (ODE) as[
ẋ

π̇

]
= A

[
x

π

]
, A :=

[
0 ϕ− 1
−κ ρ

]
• Find eigenvalues of A by solving characteristic polynomial

0 = det(A− λI) = −λ(ρ− λ) + (ϕ− 1)κ
0 = λ2 − ρλ+ (ϕ− 1)κ

• This is a simple quadratic with two solutions (“roots”)

λ1 =
ρ+

√
ρ2 − 4(ϕ− 1)κ
2

, λ2 =
ρ−

√
ρ2 − 4(ϕ− 1)κ
2

• Have two jump variables⇒ want two roots with positive real parts
• Real part of λ1 > 0 always. Real part of λ2 > 0 if ϕ > 1.
• If ρ2 − 4(ϕ− 1)κ < 0, eigenvalues have imaginary parts⇒ spirals 25
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Intuition for Indeterminacy with ϕ < 1
• Continue considering case i∗ = r

ẋ = (ϕ− 1)π
π̇ = ρπ − κx

(ODE)

• Key idea: if ϕ < 1 can construct self-fulfilling equilibria
• Let’s construct one: suppose households and firms expect

π(t) = πe0e
λt

for some πe0 and some λ < 0, e.g. πe0 = 0.1 and λ = −1
• Integrating the Euler equation and assuming limT→∞ x(T ) = 0

x(t) = (1− ϕ)
∫ ∞
t

π(s)ds

= (1− ϕ)πe0eλt
∫ ∞
t

eλ(s−t)ds

= (1− ϕ)eλt
πe0
−λ

(EE)
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Intuition for Indeterminacy with ϕ < 1
• From Phillips curve, inflation at t = 0 is

π(0) = κ

∫ ∞
0

e−ρtx(t)dt = (1− ϕ)κ
(
πe0
−λ

)∫ ∞
0

e(λ−ρ)tdt

=
(1− ϕ)κ
−λ(ρ− λ)π

e
0

• Hence if λ is such that (1−ϕ)κ−λ(ρ−λ) = 1, then π(0) = πe0
• But this is just our quadratic from last slide 0 = λ2− ρλ+ (ϕ− 1)κ
• Hence if we set λ = λ2 < 0, then any πe0 is an equilibrium, i.e. we

have just constructed a continuum of self-fulfilling equilibria
• Now let’s understand why ϕ > 1 rules out self-fulfilling equilibria

• construction requires λ < 0 for integral in (EE) to converge
• but if ϕ > 1, λ < 0, then (1−ϕ)κ

−λ(ρ−λ) < 0, i.e. πe0 > 0⇒ π(0) < 0

• Fed says: “if you ever expect inflation, we’ll raise nominal rate so
aggressively that we’ll have negative output gap & hence deflation”27



Monetary Policy: Summary

• Can achieve π = 0 and x = 0 by setting i∗ = r (and ϕ > 1)
(“divine coincidence”)

• Scenario 1: suppose economy is in (x, π) = (0, 0) equilibrium. But
at t = T , r increases once and for all, e.g. because TFP growth
increases (recall r = ρ+ Ȧ/A)

• Scenario 2: suppose economy is in (x, π) = (0, 0) equilibrium. But
at t = T , someone at the Fed goes crazy and increases i∗ (e.g.
because mistakenly think that TFP growth goes up)

• Draw time paths for (x(t), π(t)) for both scenarios

• Key: model has no state variables⇒ no dynamics
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Monetary Policy Shock (“MIT Shock”)

• Consider linearized 3 eq model, but with innovation to Taylor rule ϵ

ẋ =
1

σ
(i − r − π)

π̇ = ρπ − κx
i = r + ϕπ + ϵ, ϵ̇ = −ηϵ, η > 0

• Consider ϵ0 < 0, then ϵ(t) mean-reverts to steady state

• Nothing stochastic, shock is zero-probability event (“MIT shock”)...

• ... but can still learn a lot about model’s behavior

• For simplicity, assume no dynamics in “natural” interest rate
r(t) = ρ

• See section 3.4.1 in Gali’s book for discrete-time version
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Monetary Policy Shock (“MIT Shock”)

Proposition
The equilibrium output gap, inflation, nominal and real interest rates are

x = −
ρ+ η

(ϕ− 1)κ+ ση(ρ+ η)ϵ

π = −
κ

(ϕ− 1)κ+ ση(ρ+ η)ϵ

i = ρ+
ση(ρ+ η)− κ

(ϕ− 1)κ+ ση(ρ+ η)ϵ

i − π = ρ+
ση(ρ+ η)

(ϕ− 1)κ+ ση(ρ+ η)ϵ

• Observations: in response to ϵ(0) < 0
• output gap x(0) ↑
• inflation π(0) ↑
• nominal interest rate i(0) ambiguous
• real interest rate i(0)− π(0) ↓ 30



Proof via Method of Undetermined Coefficients

• Substitute Taylor rule into Euler equation
σẋ = (ϕ− 1)π + ϵ, ϵ̇ = −ηϵ
π̇ = ρπ − κx

• Guess
x = ψxϵ, π = ψπϵ ⇒ ẋ = −ψxηϵ, π̇ = −ψπηϵ

• Plugging in
−σψxη = (ϕ− 1)ψπ + 1
−ψπη = ρψπ − κψx

• From second equation ψx = ρ+η
κ ψπ

• Plugging into first equation gives

ψπ = −
κ

(ϕ− 1)κ+ ση(ρ+ η)
• Some more algebra/substitutions⇒ remaining coefficients.□
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Optimal Monetary Policy with “Cost Push Shocks”

• Woodford (2003): approximate welfare with quadratic loss function
1

2

∫ ∞
0

e−ρt(π(t)2 + αx(t)2)dt (∗)

• Optimal monetary policy: minimize (∗) subject to
ρπ = κx + π̇

• Solution obvious: (x(t), π(t)) = (0, 0) for all t
• Reason: Phillips curve always consistent with x = π = 0, i.e. there

is no tradeoff
• Clarida, Gali and Gertler (1999): introduce “cost push shocks” u(t)

ρπ = κx + u + π̇

where u(t)→ 0 as t →∞, e.g. u(t) = e−ηtu0, η > 0
• Can no longer achieve x = π = 0⇒ problem more interesting
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Optimal Monetary Policy with “Cost Push Shocks”
• Planner’s problem with cost-push shocks:

min
{x(t)}t≥0

1

2

∫ ∞
0

e−ρt(π(t)2 + αx(t)2)dt s.t. ρπ = κx + u + π̇

• Hamiltonian:

H =
1

2
(π2 + αx2) + µ(ρπ − κx − u)

• Optimality conditions:
µ̇ = ρµ−Hπ = −π (1)
αx = κµ (2)

• Differentiate (2) and substitute in (1)

ẋ = −
κ

α
π (3)

• (3) captures what Gali dubs “leaning against the wind”:
decrease output gap in face of inflationary pressures
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Intuition for “Leaning Against the Wind”

• Cost-push shock u > 0⇒ firms want to increase prices but this is
bad for welfare (loss function features π2)

• Planner’s response: x ↓⇒ marginal costs W/P ↓⇒ offset
inflationary pressures

• Optimality condition (3) balances welfare loss due to π > 0 and
welfare loss due to x < 0 (π2 vs αx2)
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Full Solution of Optimal Policy with Cost Push Shocks
• Given any time path u(t), solve for optimal x(t), π(t) as follows
• Strategy is continuous-time analogue of p.104 in Gali’s book
• Differentiate Phillips curve

ρπ̇ = κẋ + u̇ + π̈

• Substitute in from (3)
ρπ̇(t) = −π(t)/α+ u̇(t) + π̈(t) (4)

• Given time path u(t), (4) is a second-order ODE for π(t) that can
be solved (e.g. plug into Mathematica)

• for instance: homogeneous part is exponential
π(t) = c1e

λ1t + c2e
λ2t

where λ1/2 are roots of quadratic (from π(t) = ceλt into (4))
ρλ = −1/α+ λ2
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