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Recall from last lecture

Economy < resource allocation problem < primitives

where primitives =
e preferences
e technology

e endowments

This lecture: economy = growth model

Next slide: complete description of economy in terms of
primitives
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Growth Model: Setup

e Preferences: a single household with preferences defined by

> Btu(ce,1— hy)
t=0

with v : R4 x [0,1] = R
e Technology:
ye = F(ke, he), F:Ri xRy — Ry
cttit=y
key1 =i + (1 — )k
>0, ip>—(1—0)ke
e Endowments:

e 1 unit of time each period
o ko units of capital at time 0
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Assumptions

e Preferences: 0 < S <1landuis
e strictly increasing

strictly concave
C? (twice continuously differentiable)

e Technology: 0 <6 <1 and F is

constant returns to scale
strictly increasing

weakly concance in (k, h) jointly, strictly concave in each
argument individually

F(0, h) = 0 for all h.
C?
(“Inada conditions™)

lim Fi(k,h) =00, Vh>D0,
k—0

lim Fe(k,h) =0, Vh>0,
k—o00
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Comments
e Tradeoffs in the model

e consumption today ¢; vs. consumption tomorrow c;yi
e consumption ¢; vs. leisure 1 — hy;

e Model assumes “representative household” and
“representative firm” (jointly = “representative agent”)

e When is this justified? If at least one of following 3 conditions
are satisfied
@ all individuals in economy are identical
@ particular assumptions on preferences ( “homotheticity”,
“Gorman aggregation™)
© perfect markets

o representative firm < perfect factor markets (capital, labor),
equalize marginal products

e representative HH < perfect insurance markets, equalize
marginal utilities

e Do we believe these conditions are satisfied? No, but...



General Comment: Modeling in
(Macro)economics

e Objective is not to build one big model that we use to address
all issues

e descriptive realism is not the objective
e instead make modeling choices that are dependent on the issue

e whether a model is “good” is context dependent

e Approach to modeling in macro(economics) well summarized
by following two statements

e “All models are false; some are useful”

e “If you want a model of the real world, look out the window”
(kidding, but only half kidding)
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General Comment: Modeling in
(Macro)economics

But: growth model is “the” benchmark model of macro

Why is this the benchmark model?
e minimal model of y where y = F(k, h)

Also, growth model = great laboratory for teaching you tools
of macro...

. and many other models in macroeconomics build on
growth model. Examples:

e Real business cycle (RBC) model = growth model with
aggregate productivity shocks

e New Keynesian model = RBC model + sticky prices

e Incomplete markets model (Aiyagari-Bewley-Huggett) =
growth model + heterogeneity in form of uninsurable
idiosyncratic shocks
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What issues is growth model useful for?

e Growth model is designed to be model of capital accumulation
process

e Growth model is not a “good” model of

growth (somewhat ironically given its name)
e income and wealth distribution (given rep. agent assumption)

inflation and monetary policy

e unemployment

financial crises

e But some of growth model's extensions (e.g. those mentioned
on previous slide) are “good” models of these issues
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Some Concepts

e Definition: A feasible allocation for the growth model is a
list of sequences {ct, ht, k¢ } such that

Ct =+ kt+1 = F(kt, ht) + (]. — 5)kt

0<h <1, >0, k>0, ko=ko
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Analysis of Growth Model

e Consistent with there being two key tradeoffs, captured by the
model, there are two choices to be made each period

® (C; VS. kt+1

® (C; VS. ht

o Will analyze

@ Pareto efficient allocations

@® decentralized equilibrium allocations

e Start with Pareto efficient allocations
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Solow Model

e Historically, much interest in allocations that resulted from
specific “ad hoc” decision rules

Ct = Syt
hf - ,_7
e = “Solow model” you may know from your undergraduate

courses

e See homehork 1
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Pareto Efficient Alloc. in Growth Model

e To simplify analysis and focus on dynamics considerations,
begin with extreme case: leisure not valued, or (with slight
abuse of notation)

u(er,1— hy) = u(ct)
e Assume (Inada condition akin to those on F)
lim u'(c) =
c—0

e Also define
f(kt) = F(kt, 1)
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Social Planner’s Problem
Only one person in economy = our life is simple.

Pareto efficient allocation = max. utility of household subject
to feasibility

Think of this as problem of fictitious “social planner”:
V(k) = max Blu(c:) s.t.
( 0) {Ct,kwl}tofotz:% ( t)
Ct + kf+1 = f(kt) + (1 — 5)/(1-
>0, ki1 >0, ko= ko

Alternatively, substitute resource constraint into objective

V(ko) = max > Btu(f(ke) + (1 — 0)ke — kes1) sit.
{kH'l}?iOt:O

0 < kep1 < Flke) + (1 — ke, ko = ko.
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Dynamic Optimization: General Theory

e There's a general theory for solving these types of problems

e let's first work out more general theory
e then apply to growth model

e purpose: teach you some tools that are also applicable for
solving other models

e In general will encounter two different formulations of
dynamic optimization problems

@ control-state formulation
@® state-only formulation

e see previous slide, return to this momentarily
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Dynamic Optimization: General Theory
Control-State Formulation
e Recall discussion of two formulations
e do state-control formulation first
e then do state-only formulation

e Pretty much all deterministic optimal control problems in
discrete time can be written as

V(%) = {mfx Zﬂ h(xt, zt)
tho

subject to the law of motion for the state

A

Xer1 =g (X¢,2t) and z: € Z, x0 = Xo.

B € (0,1): discount factor

x € X C R™: state vector

z € Z C Rk: control vector

h: X x Z — R: instantaneous return function
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Example: Growth Model

V(ko) = max Zﬁtu(ct) s.t.
£=0

{ct ke1}52 —
Ct —+ kt+1 = f(kt) —+ (]. — 5)kt
>0, kee1 >0, ko = ko

e Here the state is x; = k; and the control z; = ¢;
e h(x,z) = u(z)
e gx,z)=f(x)+(1—-9d)x—z
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Dynamic Optimization: General Theory

State-only Formulation

Alternatively, can write the same problem in terms of states
only

V(%) = max Z,BtU(xt,xt_H) s.t.

{xe11 }?20 —0

xe+1 € T(xt), X0 = Xo.

B € (0,1): discount factor
x € X CR™: state vector
U: X x X — R: instantaneous return function

M. X — X: correspondence describing feasible values for state
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Example: Growth Model

= max Zﬁf f(ke) + (1 — Okt — key1)  sit.
{kt+1}t 0 t=0

kt-‘rl € [07 f(kt) + (1 - 6)kt]7 kO = 120‘

e Here the state is x; = k;
e Ulxy)=f(x)+(1—-0)x—y
e '(x)=10,F(x)+ (1 —9d)x]
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Dynamic Optimization: General Properties
e Existence of a solution
e Extreme Value Theorem (or “Weierstrass Theorem” ):
continuous function on compact set has a maximum
e Satisfied in growth model?
e objective continuous? Yes
e constraint set compact? Yes. Result: there exists a “maximum
maintainable capital stock” k s.t. kt > k = key1 — ke <0,
and we can restrict attention to k¢ € [0, k].
e Inada conditions = f’(kt)A— § < 0 for ke large enough = there
exists k satisfying 0 = f(k) — 6k and f(k:) — 0ke < 0, ke > k
° kt>i(\:>kt+1—kt:f(kt)—ékt—ctg f(kt)_(skt<0
e = in growth model, there exists an optimal {kq+1}52,
e Uniqueness of a solution
e strictly concave objective & convex constraint set
= unique solution
e Satisfied in growth model? Yes
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Overview: Solution Methods
e There are different methods for solving dynamic optimization
problems
e not only deterministic ones ...
e ... but also stochastic ones (= with uncertainty)
e Table provides an overview of different solution methods

Discrete Time Continuous Time
sequence recursive sequence recursive
deterministic | “classical” Bellman eqn | Hamiltonian HJB eqn
stochastic Bellman eqn HJB eqn

e blue = this class (first six weeks of 503)
e recursive approach also called “dynamic programming”
e blank box
e can solve stochastic problems using sequence formulation...
e ... but recursive/dynamic programming approach strictly 20/36



Classical Solution Method of Sequence Pb.

e Recall general dynamic optimization problem

V(%) = max "U(x¢, x s.t.
(o) = o >0Vl ) "

xe+1 € T(xt), X0 = Xo.

e The following are necessary and sufficient conditions for
{xe+1}32, to be optimal: if xq41 is in the interior of I'(x;)

Uy (xt, xe41) + BUx(Xe41, xe42) =0, Ve (EE)
lim ﬂTUy(XT,XT_H_) cXT+4+1 = 0 (TC)
T—o0

and xg = Xo.

e (EE) together with (TC) and initial condition xo = %o fully
characterizes optimal {xq4+1}2,
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Derivation/Interpretation

e (EE) is called “Euler equation”

e simply first-order condition (FOC) w/ respect to x;11
e derivation: differentiate problem (P) with respect to x41
e “Euler equation” simply means “intertemporal FOC"

e (TC) is called “transversality condition”

e understanding it is harder than (EE), let's postpone this for
now and revisit in a few slides

o Note: some books (e.g. Stokey-Lucas-Prescott) write (TC) as

lim BT Ux(x7,x741) - x7 =0 (TC2)

T—o0

e To see that (TC2) is equivalent to (TC), substitute (EE) into
(TC), and evaluate at T rather than T + 1
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Example: Growth Model

e Recall social planner's problem in growth model

ko) {kma}x Z,Bt (1 —8)ke — key1) st
(P")
kip1 € [0, f(ke) + (1 —0)ke], ko = ko.
e (EE) and (TC) are
— U (Fke) + (1 — 8)ke — key) (EE))
+ BU'(F(ket1) + (1 = 0)kes1 — keyo)(F'(kes1) +1-6) =0

lim BT u/(f(kr) + (1 = 0)kr — kr11)kT41 =0 (TC)

T—oo

e Get (EE") simply by differentiating (P’) w.r.t. k11 (or by
applying formula on previous slide)
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Example: Growth Model

e (EE') can be written more intuitively as

ul(ct) !
I k) 41—
B{eyy) L) P70
SN——— MRT

MRS

MRS between ¢; and ¢;y1 = MRT between ¢; and ci41

e Same logic as in static utility maximization problems, e.g.

max U(CA, CB) s.t. ca= f(fA), cg = f(EB), bat+lp <1

CA,CB

where A=apples, B=bananas

uCA(CA7CB) _ f/(gA)
ues(ca,cg)  f'(¢B)

e growth model: different dates = different goods
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Example: Growth Model

e Summarizing all necessary conditions

u'(ce) = Bu'(ces1)(F/(ke1) +1 - 0)

(DE)
kt+1 = f(kt) + (]. — (S)kt — Ct
for all t, with
ko = ko
lim 87u'(cr)kr41 =0 (TC)
T—o0

e (DE) is system of two difference equations in (ct, k) ...

e ... needs two boundary conditions
@ initial condition for capital stock: kg = l?o
@® transversality condition, plays role of boundary condition
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Where does (TC) come from?

e Transversality condition is a bit mysterious

e Best treatments are in various papers by Kamihigashi

e most intuitive “Transversality Conditions and Dynamic
Economic Behavior,” New Palgrave Dict. of Economics, 2008
http://www.dictionaryofeconomics.com/download/pde2008_T000217.pdf
e “A simple proof of the necessity of the transversality
condition,” Economic Theory, 2002

e “Necessity of transversality conditions for infinite horizon
problems,” Econometrica, 2001

e Next slide: intuitive but “fake” derivation from finite horizon
problem

o Afterwards: necessity proof from Kamihigashi (2002)
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Where does (TC) come from?

e Consider finite horizon problem:

-
V(ko, T) = max Zﬁtu(ct) s.t.

ther1} 0 5
kt+1 = f(kt) + (1 - 6)kt — Ct, kt_|_]_ > 0.
e Lagrangean

T T T

L= Zﬁtu(ct) +Z Ae(f(ke) +(1—0)ke — ¢t — key1) + Zutktﬂ

t=0 t=0 t=0
e Necessary conditions at t = T
BT (cr) = At
AT =pur =  BTd(cr)kri1=0
utkri1 =0
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Where does (TC) come from?

From previous slide: in finite horizon problem

BT (er)kr41 =0 (*)
(%) is really two conditions in one
® B7u(ct) > 0: need kry1 =0
® B7u'(ct)=0: kry1 can be >0
Intuition for case 1: if my marginal utility of consumption at
T is positive, | want to eat up all my wealth before | die

(TC) is same condition as (x) in economy with T — oo
lim B7u/(cr)kr41=0 (TO)
T—o00

Intuition:
e capital should not grow too fast compared to marginal utility
e eg. with u(c) =logc: BTkry1/cri1 — 0
e if | save too much/spend too little, I'm not behaving optimally

(TC) rules out overaccumulation of wealth
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Proof of Necessity of (TC)

Kamihigashi (2002)

e Consider general optimal control problem

V(%) = max > B'U(x,xe41) st.
t=0

{xe41}120 _

(P)
xe+1 € T(xt), xo = Xo.

e Assumptions:
O x; € X CRY (i.e. x; >0)
® Gr(lN ={(y,x):x € X,y € [(x)} is convex, (0,0) € Gr(I)
® U:Gr(lN) — Ris C! and concave
O V(x,y) e Gr(),Uy(x,y) <0
@ For any feasible path {x;} lim71_00 Z;O BrU(x¢, Xe1) exists
(i.e. it is bounded)
e (TC) can also be derived under weaker assumptions. But
above assumptions yield straightforward proof.
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Proof of Necessity of (TC)

Kamihigashi (2002)
e Definition: A feasible path {x;} is optimal if
Z BU(X, Xi41) > Z BEU(xe, Xe+1)
t=0 t=0

for any feasible path {x;}

e i.e. {x/} attains the maximum of (P)

e Theorem: Under Assumptions 1 to 5, for any interior
optimal path {x;}

- T
Thm BT Uy (X7, x741) X741 =0
— 00
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Proof of Necessity of (TC)

Kamihigashi (2002)

Useful preliminary fact: Let f : [0,1] — R be a concave
function with (1) > —oco. Then

f(1) — f(A)

L < (1) - 1(0) )

Kamihigashi calls this a Lemma, not sure it deserves the name
Follows immediately from definition of a concave function:
fMx+ (1 =Ny)>AM(x)+(1-XNf(y) YO<A<]I, x,y
Letting x=1and y =0

(1) —f(A) < f(1) — (AF(1) + (1= N)F(0))

Rearranging yields ()
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Proof of Necessity of (TC)
Kamihigashi (2002)
e Let x{ be an interior optimal path. Consider alternative path
{X0, X1, ooos X7 AXT 1, AXT 0, o1, A €[0,1)
e path is feasible by interiority and convexity of constraint set
e By optimality
5T[U(X‘*r’ )\X;"+1)_U(X‘?ax;+1)]+ Z Bt [U()‘X:a)\X:Jrl) - U(X:aX;rl)] <0
t=T+1

e Dividing through by 1 — X

Ul M) = UG x741) o e UG xin) — UOWE, M)
8T + <y 8 . -
1-A t=T+1 1-A

< Y UGS x) — U(0,0)]

t=T+1

where the last inequality follows from A3 (concavity of U) and (x)
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Proof of Necessity of (TC)
Kamihigashi (2002)
e Applying limy_,; to the LHS

0< —BTU (x5, x741) X7 < > BIUGKE, xi1)—U(0,0)]
t=T+1

where the first inequality follows from A4 (U,(x,y) < 0) and
Al (Xt > O)
e Applying lim1_,, to both sides

- T
0<-— T'[)nooﬂ Uy (X7, X741) - X711

< i t * * _ —
< Jim Y7 AU i) — U(0,0)] = 0
t=T+1

where the equality follows from A5 (boundedness)

e (TC) now follows.[]
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(TC) in Practice

e In practice, often don't have to impose (TC) exactly
e Instead, just have to make sure trajectories “don’t blow up.”

e E.g. consider growth model: since 8 < 1, easy to see that

lim BT (cr)kr41 =0

T—oo
whenever
lim cr=c¢*, |lim kr=k*
T—o0 T—o0

with 0 < c¢*, k* < oo which is satisfied if {c¢, k¢ } converge to
steady state.
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Steady State

Definition: a steady state is a point in the state space x*
such that xop = x* implies x; = x* for all t > 1. (“if you start
there, you stay there”)

Steady state in general model: any x* € X such that
Uy (x*,x*) + BU«(x*,x*) =0

Steady state in growth model: (c*, k*) satisfying
1=p6(f(k*)+1-90)
(%)
c* =f(k*)—ok*
comes from (DE) with ¢;11 = ¢ = ¢* and ki1 = ke = k*
For example, if f(k) = Ak® a < 1. Then

1

aA -«
kf=|—--—
(7=2173)
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Dynamics

e What else can we say about dynamics of {c¢;}?°, and
{kes1}20?
e Turns out answering this is easier in continuous time
e phase diagram
e can also do discrete-time phase diagram, but a bit awkward

e so rather do it properly

e See next lecture
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