
Lecture 2: Growth Model,

Dynamic Optimization in Discrete Time

ECO 503: Macroeconomic Theory I

Benjamin Moll

Princeton University

Fall 2014

1 / 36



Recall from last lecture

• Economy ⇔ resource allocation problem ⇔ primitives

• where primitives =

• preferences

• technology

• endowments

• This lecture: economy = growth model

• Next slide: complete description of economy in terms of
primitives
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Growth Model: Setup

• Preferences: a single household with preferences defined by

∞∑

t=0

βtu(ct , 1− ht)

with u : R+ × [0, 1] → R

• Technology:

yt = F (kt , ht), F : R+ × R+ → R+

ct + it = yt

kt+1 = it + (1− δ)kt

ct ≥ 0, it ≥ −(1− δ)kt

• Endowments:

• 1 unit of time each period

• k̂0 units of capital at time 0
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Assumptions
• Preferences: 0 < β < 1 and u is

• strictly increasing

• strictly concave

• C 2 (twice continuously differentiable)

• Technology: 0 < δ ≤ 1 and F is

• constant returns to scale

• strictly increasing

• weakly concance in (k , h) jointly, strictly concave in each
argument individually

• F (0, h) = 0 for all h.

• C 2

• (“Inada conditions”)

lim
k→0

Fk(k , h) = ∞, ∀h > 0,

lim
k→∞

Fk(k , h) = 0, ∀h > 0,
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Comments
• Tradeoffs in the model

• consumption today ct vs. consumption tomorrow ct+1

• consumption ct vs. leisure 1− ht

• Model assumes “representative household” and
“representative firm” (jointly = “representative agent”)

• When is this justified? If at least one of following 3 conditions
are satisfied

1 all individuals in economy are identical

2 particular assumptions on preferences (“homotheticity”,
“Gorman aggregation”)

3 perfect markets

• representative firm ⇔ perfect factor markets (capital, labor),
equalize marginal products

• representative HH ⇔ perfect insurance markets, equalize
marginal utilities

• Do we believe these conditions are satisfied? No, but...
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General Comment: Modeling in

(Macro)economics

• Objective is not to build one big model that we use to address
all issues

• descriptive realism is not the objective

• instead make modeling choices that are dependent on the issue

• whether a model is “good” is context dependent

• Approach to modeling in macro(economics) well summarized
by following two statements

• “All models are false; some are useful”

• “If you want a model of the real world, look out the window”
(kidding, but only half kidding)
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General Comment: Modeling in

(Macro)economics

• But: growth model is “the” benchmark model of macro

• Why is this the benchmark model?

• minimal model of y where y = F (k , h)

• Also, growth model = great laboratory for teaching you tools
of macro...

• ... and many other models in macroeconomics build on
growth model. Examples:

• Real business cycle (RBC) model = growth model with
aggregate productivity shocks

• New Keynesian model = RBC model + sticky prices

• Incomplete markets model (Aiyagari-Bewley-Huggett) =
growth model + heterogeneity in form of uninsurable
idiosyncratic shocks

7 / 36



What issues is growth model useful for?

• Growth model is designed to be model of capital accumulation
process

• Growth model is not a “good” model of

• growth (somewhat ironically given its name)

• income and wealth distribution (given rep. agent assumption)

• inflation and monetary policy

• unemployment

• financial crises

• But some of growth model’s extensions (e.g. those mentioned
on previous slide) are “good” models of these issues
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Some Concepts

• Definition: A feasible allocation for the growth model is a
list of sequences {ct , ht , kt} such that

ct + kt+1 = F (kt , ht) + (1− δ)kt

0 ≤ ht ≤ 1, ct ≥ 0, kt ≥ 0, k0 = k̂0
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Analysis of Growth Model

• Consistent with there being two key tradeoffs, captured by the
model, there are two choices to be made each period

• ct vs. kt+1

• ct vs. ht

• Will analyze

1 Pareto efficient allocations

2 decentralized equilibrium allocations

• Start with Pareto efficient allocations
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Solow Model

• Historically, much interest in allocations that resulted from
specific “ad hoc” decision rules

ct = syt

ht = h̄

• = “Solow model” you may know from your undergraduate
courses

• See homehork 1
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Pareto Efficient Alloc. in Growth Model

• To simplify analysis and focus on dynamics considerations,
begin with extreme case: leisure not valued, or (with slight
abuse of notation)

u(ct , 1− ht) = u(ct)

• Assume (Inada condition akin to those on F )

lim
c→0

u′(c) = ∞

• Also define
f (kt) = F (kt , 1)
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Social Planner’s Problem
• Only one person in economy ⇒ our life is simple.

• Pareto efficient allocation = max. utility of household subject
to feasibility

• Think of this as problem of fictitious “social planner”:

V (k̂0) = max
{ct ,kt+1}∞t=0

∞∑

t=0

βtu(ct) s.t.

ct + kt+1 = f (kt) + (1− δ)kt

ct ≥ 0, kt+1 ≥ 0, k0 = k̂0.

• Alternatively, substitute resource constraint into objective

V (k̂0) = max
{kt+1}∞t=0

∞∑

t=0

βtu(f (kt) + (1− δ)kt − kt+1) s.t.

0 ≤ kt+1 ≤ f (kt) + (1− δ)kt , k0 = k̂0.
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Dynamic Optimization: General Theory

• There’s a general theory for solving these types of problems

• let’s first work out more general theory

• then apply to growth model

• purpose: teach you some tools that are also applicable for
solving other models

• In general will encounter two different formulations of
dynamic optimization problems

1 control-state formulation

2 state-only formulation

• see previous slide, return to this momentarily
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Dynamic Optimization: General Theory
Control-State Formulation

• Recall discussion of two formulations

• do state-control formulation first

• then do state-only formulation

• Pretty much all deterministic optimal control problems in
discrete time can be written as

V (x̂0) = max
{zt}∞t=0

∞∑

t=0

βth (xt , zt)

subject to the law of motion for the state

xt+1 = g (xt , zt) and zt ∈ Z , x0 = x̂0.

• β ∈ (0, 1): discount factor

• x ∈ X ⊆ R
m: state vector

• z ∈ Z ⊆ R
k : control vector

• h : X × Z → R: instantaneous return function
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Example: Growth Model

V (k̂0) = max
{ct ,kt+1}∞t=0

∞∑

t=0

βtu(ct) s.t.

ct + kt+1 = f (kt) + (1− δ)kt

ct ≥ 0, kt+1 ≥ 0, k0 = k̂0.

• Here the state is xt = kt and the control zt = ct

• h(x , z) = u(z)

• g(x , z) = f (x) + (1− δ)x − z
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Dynamic Optimization: General Theory
State-only Formulation

• Alternatively, can write the same problem in terms of states
only

V (x̂0) = max
{xt+1}∞t=0

∞∑

t=0

βtU(xt , xt+1) s.t.

xt+1 ∈ Γ(xt), x0 = x̂0.

• β ∈ (0, 1): discount factor

• x ∈ X ⊆ R
m: state vector

• U : X × X → R: instantaneous return function

• Γ : X → X : correspondence describing feasible values for state
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Example: Growth Model

V (k̂0) = max
{kt+1}∞t=0

∞∑

t=0

βtu(f (kt) + (1− δ)kt − kt+1) s.t.

kt+1 ∈ [0, f (kt) + (1− δ)kt ], k0 = k̂0.

• Here the state is xt = kt

• U(x , y) = f (x) + (1− δ)x − y

• Γ(x) = [0, f (x) + (1− δ)x ]
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Dynamic Optimization: General Properties
• Existence of a solution

• Extreme Value Theorem (or “Weierstrass Theorem”):
continuous function on compact set has a maximum

• Satisfied in growth model?

• objective continuous? Yes

• constraint set compact? Yes. Result: there exists a “maximum
maintainable capital stock” k̂ s.t. kt > k̂ ⇒ kt+1 − kt < 0,

and we can restrict attention to kt ∈ [0, k̂].

• Inada conditions ⇒ f
′(kt)− δ < 0 for kt large enough ⇒ there

exists k̂ satisfying 0 = f (k̂)− δk̂ and f (kt)− δkt < 0, kt > k̂

• kt > k̂ ⇒ kt+1 − kt = f (kt)− δkt − ct ≤ f (kt)− δkt < 0

• ⇒ in growth model, there exists an optimal {kt+1}
∞

t=0

• Uniqueness of a solution

• strictly concave objective & convex constraint set
⇒ unique solution

• Satisfied in growth model? Yes
19 / 36



Overview: Solution Methods
• There are different methods for solving dynamic optimization
problems

• not only deterministic ones ...

• ... but also stochastic ones (= with uncertainty)

• Table provides an overview of different solution methods

Discrete Time Continuous Time

sequence recursive sequence recursive

deterministic “classical” Bellman eqn Hamiltonian HJB eqn

stochastic Bellman eqn HJB eqn

• blue = this class (first six weeks of 503)

• recursive approach also called “dynamic programming”
• blank box

• can solve stochastic problems using sequence formulation...

• ... but recursive/dynamic programming approach strictly
superior
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Classical Solution Method of Sequence Pb.

• Recall general dynamic optimization problem

V (x̂0) = max
{xt+1}∞t=0

∞∑

t=0

βtU(xt , xt+1) s.t.

xt+1 ∈ Γ(xt), x0 = x̂0.

(P)

• The following are necessary and sufficient conditions for
{xt+1}

∞
t=0 to be optimal: if xt+1 is in the interior of Γ(xt)

Uy (xt , xt+1) + βUx(xt+1, xt+2) = 0, ∀t (EE)

lim
T→∞

βTUy (xT , xT+1) · xT+1 = 0 (TC)

and x0 = x̂0.

• (EE) together with (TC) and initial condition x0 = x̂0 fully
characterizes optimal {xt+1}

∞
t=0
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Derivation/Interpretation

• (EE) is called “Euler equation”

• simply first-order condition (FOC) w/ respect to xt+1

• derivation: differentiate problem (P) with respect to xt+1

• “Euler equation” simply means “intertemporal FOC”

• (TC) is called “transversality condition”

• understanding it is harder than (EE), let’s postpone this for
now and revisit in a few slides

• Note: some books (e.g. Stokey-Lucas-Prescott) write (TC) as

lim
T→∞

βTUx(xT , xT+1) · xT = 0 (TC2)

• To see that (TC2) is equivalent to (TC), substitute (EE) into
(TC), and evaluate at T rather than T + 1
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Example: Growth Model

• Recall social planner’s problem in growth model

V (k̂0) = max
{kt+1}∞t=0

∞∑

t=0

βtu(f (kt) + (1− δ)kt − kt+1) s.t.

(P’)

kt+1 ∈ [0, f (kt) + (1− δ)kt ], k0 = k̂0.

• (EE) and (TC) are

− u′(f (kt) + (1− δ)kt − kt+1) (EE’)

+ βu′(f (kt+1) + (1− δ)kt+1 − kt+2)(f
′(kt+1) + 1− δ) = 0

lim
T→∞

βTu′(f (kT ) + (1− δ)kT − kT+1)kT+1 = 0 (TC’)

• Get (EE’) simply by differentiating (P’) w.r.t. kt+1 (or by
applying formula on previous slide)
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Example: Growth Model

• (EE’) can be written more intuitively as

u′(ct)

βu′(ct+1)
︸ ︷︷ ︸

MRS

= f ′(kt+1) + 1− δ
︸ ︷︷ ︸

MRT

MRS between ct and ct+1 = MRT between ct and ct+1

• Same logic as in static utility maximization problems, e.g.

max
cA,cB

u(cA, cB ) s.t. cA = f (ℓA), cB = f (ℓB), ℓA+ℓB ≤ 1

where A=apples, B=bananas

⇒
ucA(cA, cB)

ucB (cA, cB)
=

f ′(ℓA)

f ′(ℓB)

• growth model: different dates = different goods
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Example: Growth Model

• Summarizing all necessary conditions

u′(ct) = βu′(ct+1)(f
′(kt+1) + 1− δ)

kt+1 = f (kt) + (1− δ)kt − ct

(DE)

for all t, with

k0 = k̂0

lim
T→∞

βTu′(cT )kT+1 = 0 (TC’)

• (DE) is system of two difference equations in (ct , kt) ...

• ... needs two boundary conditions

1 initial condition for capital stock: k0 = k̂0

2 transversality condition, plays role of boundary condition
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Where does (TC) come from?

• Transversality condition is a bit mysterious

• Best treatments are in various papers by Kamihigashi

• most intuitive “Transversality Conditions and Dynamic
Economic Behavior,” New Palgrave Dict. of Economics, 2008
http://www.dictionaryofeconomics.com/download/pde2008_T000217.pdf

• “A simple proof of the necessity of the transversality
condition,” Economic Theory, 2002

• “Necessity of transversality conditions for infinite horizon
problems,” Econometrica, 2001

• Next slide: intuitive but “fake” derivation from finite horizon
problem

• Afterwards: necessity proof from Kamihigashi (2002)
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Where does (TC) come from?

• Consider finite horizon problem:

V (k̂0,T ) = max
{kt+1}Tt=0

T∑

t=0

βtu(ct) s.t.

kt+1 = f (kt) + (1− δ)kt − ct , kt+1 ≥ 0.

• Lagrangean

L =
T∑

t=0

βtu(ct)+
T∑

t=0

λt(f (kt)+ (1− δ)kt − ct − kt+1)+
T∑

t=0

µtkt+1

• Necessary conditions at t = T

βTu′(cT ) = λT

λT = µT ⇒ βTu′(cT )kT+1 = 0

µTkT+1 = 0
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Where does (TC) come from?
• From previous slide: in finite horizon problem

βTu′(cT )kT+1 = 0 (∗)

• (∗) is really two conditions in one

1 βTu′(cT ) > 0: need kT+1 = 0

2 βTu′(cT ) = 0: kT+1 can be > 0

• Intuition for case 1: if my marginal utility of consumption at
T is positive, I want to eat up all my wealth before I die

• (TC) is same condition as (∗) in economy with T → ∞

lim
T→∞

βTu′(cT )kT+1 = 0 (TC)

• Intuition:
• capital should not grow too fast compared to marginal utility

• e.g. with u(c) = log c : βT kT+1/cT+1 → 0

• if I save too much/spend too little, I’m not behaving optimally

• (TC) rules out overaccumulation of wealth
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Proof of Necessity of (TC)
Kamihigashi (2002)

• Consider general optimal control problem

V (x̂0) = max
{xt+1}∞t=0

∞∑

t=0

βtU(xt , xt+1) s.t.

xt+1 ∈ Γ(xt), x0 = x̂0.

(P)

• Assumptions:

1 xt ∈ X ⊂ R
m
+ (i.e. xt ≥ 0)

2 Gr(Γ) = {(y , x) : x ∈ X , y ∈ Γ(x)} is convex, (0, 0) ∈ Gr(Γ)

3 U : Gr(Γ) → R is C 1 and concave

4 ∀(x , y) ∈ Gr(Γ),Uy (x , y) ≤ 0

5 For any feasible path {xt} limT→∞

∑T

t=0 β
tU(xt , xt+1) exists

(i.e. it is bounded)

• (TC) can also be derived under weaker assumptions. But
above assumptions yield straightforward proof.
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Proof of Necessity of (TC)
Kamihigashi (2002)

• Definition: A feasible path {x∗t } is optimal if

∞∑

t=0

βtU(x∗t , x
∗
t+1) ≥

∞∑

t=0

βtU(xt , xt+1)

for any feasible path {xt}

• i.e. {x∗t } attains the maximum of (P)

• Theorem: Under Assumptions 1 to 5, for any interior

optimal path {x∗t }

lim
T→∞

βTUy (x
∗
T , x

∗
T+1) · x

∗
T+1 = 0
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Proof of Necessity of (TC)
Kamihigashi (2002)

• Useful preliminary fact: Let f : [0, 1] → R be a concave

function with f (1) > −∞. Then

f (1) − f (λ)

1− λ
≤ f (1)− f (0) (∗)

• Kamihigashi calls this a Lemma, not sure it deserves the name

• Follows immediately from definition of a concave function:

f (λx + (1− λ)y) ≥ λf (x) + (1− λ)f (y) ∀ 0 ≤ λ ≤ 1, x , y

• Letting x = 1 and y = 0

f (1)− f (λ) ≤ f (1) − (λf (1) + (1− λ)f (0))

• Rearranging yields (∗)
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Proof of Necessity of (TC)
Kamihigashi (2002)

• Let x∗t be an interior optimal path. Consider alternative path

{x∗0 , x
∗
1 , ..., x

∗
T , λx

∗
T+1, λx

∗
T+2, ...}, λ ∈ [0, 1)

• path is feasible by interiority and convexity of constraint set

• By optimality

βT [U(x∗T , λx
∗

T+1)−U(x∗T , x
∗

T+1)]+

∞∑

t=T+1

βt
[
U(λx∗t , λx

∗

t+1)− U(x∗t , x
∗

t+1)
]
≤ 0

• Dividing through by 1− λ

βT
U(x∗T , λx

∗

T+1)− U(x∗T , x
∗

T+1)

1− λ
≤

∞∑

t=T+1

βt U(x∗t , x
∗

t+1)− U(λx∗t , λx
∗

t+1)

1− λ

≤

∞∑

t=T+1

βt [U(x∗t , x
∗

t+1)− U(0, 0)]

where the last inequality follows from A3 (concavity of U) and (∗)
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Proof of Necessity of (TC)
Kamihigashi (2002)

• Applying limλ→1 to the LHS

0 ≤ −βTUy(x
∗
T , x

∗
T+1)·x

∗
T+1 ≤

∞∑

t=T+1

βt [U(x∗t , x
∗
t+1)−U(0, 0)]

where the first inequality follows from A4 (Uy (x , y) ≤ 0) and
A1 (xt ≥ 0)

• Applying limT→∞ to both sides

0 ≤ − lim
T→∞

βTUy (x
∗
T , x

∗
T+1) · x

∗
T+1

≤ lim
T→∞

∞∑

t=T+1

βt [U(x∗t , x
∗
t+1)− U(0, 0)] = 0

where the equality follows from A5 (boundedness)

• (TC) now follows.�
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(TC) in Practice

• In practice, often don’t have to impose (TC) exactly

• Instead, just have to make sure trajectories “don’t blow up.”

• E.g. consider growth model: since β < 1, easy to see that

lim
T→∞

βTu′(cT )kT+1 = 0

whenever
lim

T→∞
cT = c∗, lim

T→∞
kT = k∗

with 0 < c∗, k∗ < ∞ which is satisfied if {ct , kt} converge to
steady state.
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Steady State
• Definition: a steady state is a point in the state space x∗

such that x0 = x∗ implies xt = x∗ for all t ≥ 1. (“if you start
there, you stay there”)

• Steady state in general model: any x∗ ∈ X such that

Uy (x
∗, x∗) + βUx(x

∗, x∗) = 0

• Steady state in growth model: (c∗, k∗) satisfying

1 = β(f ′(k∗) + 1− δ)

c∗ = f (k∗)− δk∗
(∗)

comes from (DE) with ct+1 = ct = c∗ and kt+1 = kt = k∗

• For example, if f (k) = Akα, α < 1. Then

k∗ =

(
αA

β−1 − 1 + δ

) 1
1−α
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Dynamics

• What else can we say about dynamics of {ct}
∞
t=0 and

{kt+1}
∞
t=0?

• Turns out answering this is easier in continuous time

• phase diagram

• can also do discrete-time phase diagram, but a bit awkward

• so rather do it properly

• See next lecture
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