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Course Overview

Two Parts:

(1) Tools: continuous time methods in macroeconomics

(2) Substance: stochastic models of distribution and growth

• Everything is flexible, feedback very useful!



Substance: Where I’m going

• Stochastic models of distribution and growth

(or “heterogeneous agent models” or “micro to macro”)

• Want to get you started on building these kind of models

• Why should you be interested in this?

• Fertile area of research, excellent dissertation topics!

• Many open questions

• Hard – high entry barriers



Substance: Where I’m going

• Some questions we will try to answer:

• Where does the firm size distribution come from?

• Where do income and wealth distribution come from?

• How important is firm heterogeneity and reallocation for the

aggregate economy?

• What, if any, are the interactions between the aggregate

economy and income and wealth distribution?



Substance: Where I’m going

• Macro theories can broadly be classified as follows:

(1) Models with aggregate shocks (e.g. RBC, New Keynesian):

very well developed

(2) Models with idiosyncratic shocks (Aiyagari-Bewley-Hugget):

relatively well developed numerically though not theoretically

(3) Models with both idiosyncratic and aggregate shocks

(Krusell-Smith): underdeveloped KS on accuracy of their algorithm

• One of the big unanswered questions in macro: how to get a

tractable micro to macro model ((2) and especially (3))

• This course: briefly do (1), spend most of the time on (2),

not much on (3)

• Main reason for teaching you this continuous time stuff: think

it’s incredibly useful for building better theories of distribution

and growth ((2) and (3))



Plan of Lecture

(1) Hamiltonians

(2) Phase diagrams

(3) Finite difference methods and shooting algorithm



Hamiltonians

• Pretty much all deterministic optimal control problems in

continuous time can be written as

V (x0) = max
u(t)∞

t=0

∫

∞

0
e−ρth (x (t) , u (t)) dt

subject to the law of motion for the state

ẋ (t) = g (x (t) , u (t)) and u (t) ∈ U

for t ≥ 0, x(0) = x0 given.

• ρ ≥ 0: discount rate

• x ∈ X ⊆ R
m: state vector

• u ∈ U ⊆ R
n: control vector

• h : X × U → R: instantaneous return function



Example: Neoclassical Growth Model

V (k0) = max
c(t)∞

t=0

∫

∞

0
e−ρtU(c(t))dt

subject to
k̇ (t) = F (k(t))− δk(t) − c(t)

for t ≥ 0, k(0) = k0 given.

• Comes from

k̇ = i − δk , c + i = F (k)

• Here the state is x = k and the control u = c

• h(x , u) = U(u)

• g(x , u) = F (x)− δx − u



Hamiltonian: General Formulation

• Consider the general optimal control problem two slides back.

• Can obtain necessary and sufficient conditions for an optimum

using the following procedure (“cookbook”)

• Current-value Hamiltonian

H (x , u, λ) = h (x , u) + λg (x , u) .

• λ ∈ R
m: “co-state”



Hamiltonian: General Formulation

• Necessary and sufficient conditions:

Hu (x (t) , u (t) , λ (t)) = 0

λ̇ (t) = ρλ (t)− Hx (x (t) , u (t) , λ (t))

ẋ (t) = g (x (t) , u (t))

for all t ≥ 0.

• Initial value for state variable(s): x(0) = x0.

• Boundary condition for co-state variable(s) λ (t), called

“Transversality condition”

lim
T→∞

e−ρTλ (T ) x (T ) = 0.

• Note: initial value of the co-state variable λ (0) not

predetermined.



Example: Neoclassical Growth Model

• Recall: h(x , u) = U(x) and g(x , u) = F (k)− δk − c

• Using the “cookbook”

H(k , c , λ) = U(c) + λ[F (k)− δk − c]

• We have

Hc(k , c , λ) = U ′(c)− λ

Hk(k , c , λ) = λ(F ′(k)− δ)

• Therefore conditions for optimum are:

λ̇ = λ(ρ+ δ − F ′(k))

k̇ = F (k)− δk − c

U ′(c) = λ

(ODE)

with k(0) = k0 and limT→∞ e−ρTλ(T )k(T ) = 0.



Example: Neoclassical Growth Model

• Interpretation: continuous time Euler equation

• In discrete time

λt = βλt+1(F
′(kt+1) + 1− δ)

kt+1 = F (kt) + (1− δ)kt − ct

U ′(ct) = λt

• (ODE) is continous-time analogue



Phase Diagrams

• How analyze (ODE)? In one-dimensional case (scalar x): use

phase-diagram

• Two possible phase-diagrams:

(i) in (λ, k)-space: more general strategy.

(ii) in (c , k)-space: nicer in terms of the economics.

• For (i), use U ′(c) = λ or c = (U ′)−1(λ) to write (ODE) as

λ̇ = λ(ρ+ δ − F ′(k))

k̇ = F (k)− δk − (U ′)−1(λ)
(ODE’)

with k(0) = k0 and limT→∞ e−ρTλ(T )k(T ) = 0.

• Homework 1: draw phase-diagram in (λ, k)-space.



Phase Diagrams

• For (ii), assume CRRA utility

U(c) =
c1−σ

1− σ

• Not necessary but makes algebra easier.

c−σ = λ ⇒ −σ log c(t) = log λ(t) ⇒ −σ
ċ

c
=

λ̇

λ

• Therefore write (ODE) as

ċ

c
=

1

σ
(F ′(k)− ρ− δ)

k̇ = F (k)− δk − c

(ODE”)

with k(0) = k0 and limT→∞ e−ρT c(T )−σk(T ) = 0.



Steady State

• In steady state k̇ = ċ = 0. Therefore

F ′(k∗) = ρ+ δ

c∗ = F (k∗)− δk∗

• Same as in discrete time with β = 1/(1 + ρ).

• For example, if F (k) = Akα, α < 1. Then

k∗ =

(

αA

ρ+ δ

)
1

1−α



Phase Diagram

• See graph that I drew in lecture by hand or Figure 8.1 in

Acemoglu’s textbook.

• Obtain saddle path.

• Prove stability of steady state.

• Important: saddle path is not a “knife edge” case in the sense

that the system only converges to steady state if (c(0), k(0))

happens to lie on the saddle path and diverges for all other

initial conditions.

• In contrast to the state variable k(t), c(t) is a “jump

variable.” That is, c(0) is free and always adjusts so as to lie

on the saddle path.



Numerical Solution: Finite-Difference Methods

• By far the simplest and most transparent method for

numerically solving differential equations.

• Approximate k(t) and c(t) at N discrete points in the time

dimension, tn, n = 1, ...,N. Denote distance between grid

points by ∆t.

• Use short-hand notation kn = k(tn).

• Approximate derivatives

k̇(tn) ≈
kn+1 − kn

∆t

• Approximate (ODE”) as

cn+1 − cn

∆t

1

cn
=

1

σ
(F ′(kn)− ρ− δ)

kn+1 − kn

∆t
= F (kn)− δkn − cn



Finite-Difference Methods/Shooting Algorithm

• Or

cn+1 = ∆tcn
1

σ
(F ′(kn)− ρ− δ) + cn

kn+1 = ∆t(F (kn)− δkn − cn) + kn
(FD)

with k0 = k0 given.

• Homework 2: draw phase diagram/saddle path in MATLAB.

• Assume F (k) = Akα, A = 1, α = 0.3, σ = 2, ρ = δ = 0.05,

k0 =
1
2k

∗, ∆t = 0.1, N = 700.

• Algorithm:

(i) guess c0

(ii) obtain (cn, kn), n = 1, ...,N by running (FD) forward in time.

(iii) If the sequence converges to (c∗, k∗), then you have obtained

the correct saddle path. If not, back to (i) and try different c0.

• This is called a “shooting algorithm”



Krusell-Smith on Accuracy of their Algorithm Back

• p.897: “Like most numerical procedures, the present one does

not provide bounds on how far the approximate equilibrium

deviates from an exact equilibrium. In particular, one might

imagine that there are self-fulfilling approximate equilibria:

because agents perceive a simple law of motion, they behave

accordingly.”

• Another problem: this R2 business. See

• Den Haan, Wouter (2010), “Assessing the Accuracy of the

Aggregate Law of Motion in Models with Heterogeneous

Agents”


