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Course Overview

Two Parts:

(1) Substance: income and wealth distribution in macroeconomics

(2) Tools: continuous time methods

• Everything is flexible, feedback very useful!

2



Substance: Where I’m going

• Income and wealth distribution in macroeconomics...

• ... or models in which relevant state variable is a distribution

• Want to get you started on building these kind of models

• Why should you be interested in this?

• Fertile area of research, excellent dissertation topics!
• Many open questions
• Hard – high entry barriers
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Substance: Where I’m going

• Some questions we will try to answer:

• Why are income and wealth so unequally distributed?
• Does inequality affect macroeconomic aggregates?
• Does inequality affect how the macroeconomy responds to

shocks?
• What are the forces that lead to the concentration of

economic activity in a few very large firms?
• How important is firm heterogeneity and reallocation for the

aggregate economy?

• More generally, want to give you an idea of some open questions
in macro and get you started with your research!
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Put in a Nice Way

“The most important discovery was the evidence on the pervasiveness
of heterogeneity and diversity in economic life.”
(Heckman, 2001)

“While we often must focus on aggregates for macroeconomic policy, it
is impossible to think coherently about national well-being while
ignoring inequality and poverty, neither of which is visible in aggregate
data. Indeed, and except in exceptional cases, macroeconomic
aggregates themselves depend on distribution.”
(Deaton, 2016)
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What you’ll be able to do at end of this course

• Joint distribution of income and wealth in Aiyagari model
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What you’ll be able to do at end of this course

• Experiment: effect of one-time redistribution of wealth
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What you’ll be able to do at end of this course

Video of convergence back to steady state
https://www.dropbox.com/s/op5u2nlifmmer2o/distribution_tax.mp4?dl=0
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Plan of Lecture

(1) Hamiltonians

(2) Phase diagrams

(3) Finite difference methods and shooting algorithm
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Hamiltonians

• Pretty much all deterministic optimal control problems in
continuous time can be written as

v (x0) = max
{α(t)}t≥0

∫ ∞
0

e−ρtr (x (t) , α (t)) dt

subject to the law of motion for the state

ẋ (t) = f (x (t) , α (t)) and α (t) ∈ A

for t ≥ 0, x(0) = x0 given.
• ρ ≥ 0: discount rate
• x ∈ X ⊆ RN : state vector
• α ∈ A ⊆ RM : control vector
• r : X × A→ R: instantaneous return function
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Example: Neoclassical Growth Model

v (k0) = max
{c(t)}t≥0

∫ ∞
0

e−ρtu(c(t))dt

subject to
k̇ (t) = F (k(t))− δk(t)− c(t)

for t ≥ 0, k(0) = k0 given.

• Here the state is x = k and the control α = c

• r(x, α) = u(α)

• f (x, α) = F (x)− δx − α
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Hamiltonian: General Formulation

• Consider the general optimal control problem two slides back

• Can obtain necessary and sufficient conditions for an optimum
using the following procedure (“cookbook”)

• Current-value Hamiltonian

H (x, α, λ) = r (x, α) + λf (x, α)

• λ ∈ RN : “co-state” vector
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Hamiltonian: General Formulation

• Necessary and sufficient conditions:
Hα (x (t) , α (t) , λ (t)) = 0

λ̇ (t) = ρλ (t)−Hx (x (t) , α (t) , λ (t))

ẋ (t) = f (x (t) , α (t))

for all t ≥ 0

• Initial value for state variable(s): x(0) = x0
• Boundary condition for co-state variable(s) λ (t), called

“transversality condition”
lim
T→∞

e−ρTλ (T ) x (T ) = 0

• http://www.princeton.edu/~moll/ECO503Web/Lecture2_ECO503.pdf (Slide 26 ff)

• Note: initial value of the co-state variable λ (0) not predetermined
13

http://www.princeton.edu/~moll/ECO503Web/Lecture2_ECO503.pdf


Example: Neoclassical Growth Model

• Recall: r(x, α) = u(α) and f (x, α) = F (x)− δx − α
• Using the “cookbook”

H(k, c, λ) = u(c) + λ[F (k)− δk − c ]
• We have

Hc(k, c, λ) = u′(c)− λ

Hk(k, c, λ) = λ(F ′(k)− δ)

• Therefore conditions for optimum are:
λ̇ = λ(ρ+ δ − F ′(k))

k̇ = F (k)− δk − c

u′(c) = λ

(ODE)

with k(0) = k0 and limT→∞ e−ρTλ(T )k(T ) = 0. 14



Example: Neoclassical Growth Model

• Interpretation: continuous time Euler equation

• In discrete time

λt = βλt+1(F
′(kt+1) + 1− δ)

kt+1 = F (kt) + (1− δ)kt − ct

u′(ct) = λt

• (ODE) is continous-time analogue
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Phase Diagrams

• How analyze (ODE)? In one-dimensional case (scalar x ): use
phase-diagram

• Two possible phase-diagrams:
(i) in (λ, k)-space: more general strategy
(ii) in (c, k)-space: nicer in terms of the economics

• For (i), use u′(c) = λ or c = (u′)−1(λ) to write (ODE) as
λ̇ = λ(ρ+ δ − F ′(k))

k̇ = F (k)− δk − (u′)−1(λ)
(ODE’)

with k(0) = k0 and limT→∞ e−ρTλ(T )k(T ) = 0.

• Homework 1: draw phase-diagram in (λ, k)-space.
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Phase Diagrams

• For (ii), note that
λ̇ = u′′(c)ċ

and substitute into equation for λ̇:
u′′(c)ċ = u′(c)(ρ+ δ − F ′(k))

• Or define the “coefficient of relative risk aversion”

σ(c) := −
u′′(c)c

u′(c)
> 0

and write (ODE) as
ċ

c
=
1

σ(c)
(F ′(k)− ρ− δ)

k̇ = F (k)− δk − c
(ODE”)

with k(0) = k0 and limT→∞ e−ρT u′(c(T ))k(T ) = 0.
• Note: 1

σ(c) = “intertemporal elasticity of substitution” (IES)
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Steady State

• In steady state k̇ = ċ = 0. Therefore

F ′(k∗) = ρ+ δ

c∗ = F (k∗)− δk∗

• Same as in discrete time with β = 1/(1 + ρ).

• For example, if F (k) = Akα, α < 1. Then

k∗ =

(
αA

ρ+ δ

) 1
1−α
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Phase Diagram

• See graph that I drew in lecture by hand or Figure 8.1 in
Acemoglu’s textbook

• Obtain saddle path

• Prove stability of steady state

• Important: saddle path is not a “knife edge” case in the sense that
the system only converges to steady state if (c(0), k(0)) happens
to lie on the saddle path and diverges for all other initial conditions

• In contrast to the state variable k(t), c(t) is a “jump variable.” That
is, c(0) is free and always adjusts so as to lie on the saddle path
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Violations of Transversality Condition

• Question: how do you know that trajectories with c(0) off the
saddle path violate the transversality condition?

• See Acemoglu, chapter 8 “The Neoclassical Growth Model”
section 5 “Transitional Dynamics”

• if c(0) below saddle path, k(t)→ kmax and c(t)→ 0
• if c(0) above saddle path, k(t)→ 0 in finite time while
c(t) > 0. Violates feasibility.

• local analysis/linearization gives same answer
http://www.princeton.edu/~moll/ECO503Web/Lecture4_ECO503.pdf

• notes that most rigorous and straightforward way is to use that
concave problems have unique solution (his Theorem 7.14)
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Numerical Solution: Finite-Difference Method

• By far the simplest and most transparent method for numerically
solving differential equations.

• Approximate k(t) and c(t) at N discrete points in the time
dimension, tn, n = 1, ..., N. Denote distance between grid points
by ∆t.

• Use short-hand notation kn = k(tn).
• Approximate derivatives

k̇(tn) ≈
kn+1 − kn

∆t

• Approximate (ODE”) as
cn+1 − cn

∆t

1

cn
=

1

σ(cn)
(F ′(kn)− ρ− δ)

kn+1 − kn

∆t
= F (kn)− δkn − cn
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Finite-Difference Method/Shooting Algorithm

• Or

cn+1 = ∆tcn
1

σ(cn)
(F ′(kn)− ρ− δ) + cn

kn+1 = ∆t(F (kn)− δkn − cn) + kn
(FD)

with k0 = k0 given.
• Homework 2: draw phase diagram/saddle path in MATLAB.
• Assume F (k) = Akα, u(c) = c1−σ

1−σ , A = 1, α = 0.3, σ = 2,
ρ = δ = 0.05, k0 = 1

2k
∗, ∆t = 0.1, N = 700.

• Algorithm:
(i) guess c0
(ii) obtain (cn, kn), n = 1, ..., N by running (FD) forward in time.
(iii) If the sequence converges to (c∗, k∗), then you have obtained

the correct saddle path. If not, back to (i) and try different c0.
• This is called a “shooting algorithm” 22


