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Plan

1. Background: bringing heterogeneous agent models to data – the
state of the literature

2. Alvarez-Parra, Posch & Wang

3. Other papers estimating heterogeneneous agent models
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Bringing HA Models to Data – State of Literature

• 99 percent of papers: calibration

• Remaining 1 percent: some form of estimation, usually GMM

• Usual calibration strategy:

• take some parameters from literature (e.g. Frisch elasticity of
labor supply, say from Chetty et al survey = 0.5-1)

• calibrate others internally to hit some aggregate moments
(e.g. discount rate ρ to match K/Y = 3)

• see e.g. Section 1.5 of these lecture notes:
http://www.econ.nyu.edu/user/violante/NYUTeaching/Macrotheory/

Spring14/LectureNotes/lecture7_14.pdf
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Calibration vs Estimation
• Big debate in 90s

• Hansen-Heckman “The Empirical Foundations of Calibration”
• Browning-Hansen-Heckman “Micro Data and GE Models”
• Sargent interview http://www.tomsargent.com/research/SargentinterviewMD.pdf

• Things to note:
• calibration and estimation can be similar: (well-done)

calibration is basically GMM without standard errors
• perhaps more relevant distinction: full-information (e.g. MLE)

vs limited-information methods (e.g. GMM, calibration)?
• my impression: main reason for not estimating is

computational cost (having s.e.’s better than not having them)
• What may calibration miss?

• standard errors
• metric for judging model’s goodness of fit
• metric for comparing different models (model selection) 4
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Parra-Alvarez, Posch & Wang
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Parra-Alvarez, Posch and Wang

• Maximum likelihood estimation of Aiyagari-Bewley-Huggett model

• current version: mainly discuss identification issues

• So far: no data – though will ultimately use SCF
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A prototypical heterogeneous agent model
Competitive Stationary Equilibrium

The optimal behavior of households is characterized by the system of

HJB equations:

ρV (at , el) = u (c (at , el)) + Va (rat + wel − c (at , el)) + φhl (V (at , eh) − V (at , el))

ρV (at , eh) = u (c (at , eh)) + Va (rat + weh − c (at , eh)) + φlh (V (at , el) − V (at , eh))

The optimal behavior of firms is given by:

r = αKα−1L1−α
, w = (1 − α) KαL−α

where

K =
∑

et∈{el ,eh}

∞̂

a

atg (at , et)dat , L =
∑

et∈{el ,eh}

∞̂

a

etg (at , et)dat

which link the dynamic and randomness that occurs at the micro level

with the deterministic behavior at the macro level.
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A prototypical heterogeneous agent model
Distribution of endowments and wealth

The subdensities g (at , et) correspond to the solution to the
(time-invariant) Fokker-Planck equations:

0 = −
∂

∂at

[s (at , el) g (at , el)] − φhlg (at , el) + φlhg (at , eh)

0 = −
∂

∂at

[s (at , eh) g (at , eh)] − φlhg (at , eh) + φhlg (at , el) .

The (unconditional) density of wealth is defined as:

g (at) = g (at , el) + g (at , eh)

where the subdensities g (at , et) = g (at | et) p (et) and p (et) is the
stationary distribution of a given efficiency level:

p (et) =
1

φ1 (et) + φ2 (et)

[

φ1 (et) 1{et=el} + φ2 (et) 1{et=eh}

]

.
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MLE: A Simple Example to Refresh your Memories

• Suppose we know that the wealth distribution is Pareto with some
tail parameter θ

g(a) = θa−θ−1, a ≥ 1

• We don’t know θ but we have an i.i.d sample ai , i = 1, .., N

• Let’s use the wealth sample to estimate θ by maximum likelihood

• Follow standard steps of MLE

1. form likelihood function L(θ|a1, ..., aN)
2. take logs
3. find θ̂ that maximizes log-likelihood function, logL(θ|a1, ..., aN)
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MLE: A Simple Example to Refresh your Memories

• Step 1: form likelihood function
• for each θ, how likely it is to have observed the data that we

did in fact observe? Answer:

L(θ|a1, ..., aN) =
N∏
i=1

g(ai) =

N∏
i=1

θa−θ−1i

• Step 2: take logs

logL(θ|a1, ..., aN) =
N∑
i=1

log
(
θa−θ−1i

)
= N log θ − (θ + 1)

N∑
i=1

log ai

• Step 3: maximize log-likelihood function

max
θ
logL(θ|a1, ..., aN) = max

θ

{
N log θ − (θ + 1)

N∑
i=1

log ai

}

FOC : N

θ
=

N∑
i=1

log ai ⇒ θ̂ =

(
1

N

N∑
i=1

log ai

)−1
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MLE: A Simple Example to Refresh your Memories

• ML estimator makes intuitive sense, in particular

tail inequality = 1
θ̂
=
1

N

N∑
i=1

log ai

• Another intuition: x := log a ∼ θe−θx , i.e. exponential distribution

• Mean of exponential distribution is

E[x ] =
1

θ

• ML estimator of θ is based on sample analogue

1

θ̂
=
1

N

N∑
i=1

xi =
1

N

N∑
i=1

log ai
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Likelihood Function in PPW

Let a = [a1, . . . , aN ] be a sample of N i.i.d observations on individual
wealth and θ ∈ Θ ⊂ R

K a vector of structural parameters. Recall that
the p.d.f of wealth can be computed as:

g (an | θ) = g (an , el | θ) + g (an , eh | θ) , ∀n = 1, . . . , N .

The log-likelihood function for a given sample is give by:

LN (θ | a) =
N∑

n=1

log g (an | θ) ,

whereas the maximum likelihood (ML) estimator is defined as:

θ̂N = arg max
θ∈Θ

LN (θ | a) .
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Population parameters (θ0)

θ0 = {γ, ρ, α, δ, eh , el , φlh , φhl}

Relative risk aversion, γ 2.0000
Rate of time preference, ρ 0.0410
Capital share in production, α 0.3600
Depreciation rate of capital, δ 0.0800
Endowment of high efficiency, eh 1.0000
Endowment of low efficiency, el 0.1000
Demotion rate, φlh 0.6697
Promotion rate, φhl 4.4644

In the model, time is measured in years and parameters should be
interpreted accordingly. Demotion and promotion rates computed from
Hugget (1993) who reports p (eh | el) = 0.5 and p (eh | eh) = 0.925 in a
model with six periods per year.
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Identification with GMM?
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• PPW: (ρ, α, δ) not identified from GMM targeting wealth Gini
• Is this really an argument against GMM?
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Population Identification
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Distance function d (g (a | θ) , g (a | θ0)). The graph shows the percentage deviation of

the L1 distance criterion as a function of the parameter space. The population values for

the structural parameters, θ0, are represented by the dotted vertical line.
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Population Identification
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Distance surface. The graph shows the percentage deviation of the L1 distance function

for selected parameters as a function of the parameter space (top) and its respective

contour plot (bottom). "×" locates the true parameter values, and the maximum of the

distance surface, θ̃ = arg max d (θ, θ0).
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Small sample estimates
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estimated parameters across M = 100 random samples of size N = 20000 generated from

the true data generating process. The vertical line denotes the true parameter value.
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Sample identification

γ
1 2 3 4

×10
4

-1.145

-1.14

-1.135

-1.13

ρ
0.05 0.1 0.15 0.2

×10
4

-9

-8

-7

-6

-5

-4

-3

-2

-1

α
0.2 0.3 0.4 0.5

×10
4

-12

-10

-8

-6

-4

-2

0

δ
0.05 0.1 0.15 0.2

×10
4

-5

-4

-3

-2

-1

el

0.05 0.1 0.15 0.2 0.25

×10
4

-1.142

-1.14

-1.138

-1.136

-1.134

-1.132

-1.13

-1.128

eh

0.5 1 1.5 2

×10
4

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

φhl

2 4 6

×10
4

-1.165

-1.16

-1.155

-1.15

-1.145

-1.14

-1.135

-1.13

-1.125

φlh

0.4 0.6 0.8 1

×10
4

-1.135

-1.134

-1.133

-1.132

-1.131

-1.13

-1.129

Individual log-likelihood profile. The graph shows the log-likelihood function L (θ | a)

for each θ ∈ θ along a neighborhood of the its true value for N = 5000. The vertical line

denotes the true parameter value and ’×’ marks the maximum value of the log-likelihood

profile.

NHH-UiO Workshop (Oslo, Norway) Identification and estimation of heterogeneous agent models



Calibration and estimation
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Log-likelihood profile contours for selected parameters. Log-likelihood function

L (θ | a) for selected parameters and N = 5000. Top contours as before. In bottom contours

α and δ are miscalibrated to 0.5 and 0.1 respectively. "×" locates the true parameter values,

and the maximum of the log-likelihood.
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Thoughts on Parra-Alvarez, Posch & Wang

1. PPW include parameters of income process (ϕhl , ϕlh, eh, el) in
parameter vector θ to be estimated

• different from typical strategy: estimate using panel data

2. How about using richer income process? Already know ahead of
time that two-state model has a counterfactual income distribution

3. PPW use only marginal distribution of wealth g(a). In practice,
typically have more data:

• how about using joint distribution of income, wealth g(a, z)?
• how about using joint distribution of income, wealth,

consumption (“3D inequality” e.g. from PSID)
• how about using panel data. For MLE: transition densities
f (at+s , zt+s |at , zt) also satisfy Kolmogorov Forward equation
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Other papers estimating
heterogeneous agent models
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Estimation of HA Models without Aggregate Shocks

GMM estimation:
• Abbott, Gallipoli, Meghir and Violante (2016), “Education Policy

and Intergenerational Transfers in Equilibrium”
• Benhabib, Bisin and Luo (2016), “Wealth distribution and social

mobility in the US: A quantitative approach”
• Luo and Mongey (2016) “Student debt and job choice: Wages vs.

job satisfaction”

Maximum likelihood estimation:
• any other papers besides Parra-Alvarez, Posch & Wang?

Comments/open questions:
• above studies mostly use moments from cross-sectional data
• what about panel data?
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Estimation of HA Models with Aggregate Shocks
• Goal: use time-series variation of higher-order moments in micro

data to identify shocks driving business cycles/effects of policies
• Winberry (2016), “A Toolbox for Solving and Estimating

Heterogeneous Agent Macro Models”
• Mongey and Williams (2016), “Accounting for Firm Dispersion

and Business Cycles”
• Typical approach: discrete time Reiter-type perturbation method

• use projection method (e.g. Chebyshev collocation) to solve
steady state, represent distribution as finite dimensional object

• IMHO much more complicated and “black-boxy” than
continuous-time finite-difference method

• estimate using Bayesian methodss
• subset of param’s estimated internally, subset fixed externally

• Estimation of model with aggregate shocks is also ultimate goal of
tools presented in Lecture 9 (Ahn-Kaplan-Moll-Winberry-Wolf) 23



Thanks for six fun weeks!
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