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1. Background: bringing heterogeneous agent models to data — the
state of the literature

2. Alvarez-Parra, Posch & Wang

3. Other papers estimating heterogeneneous agent models



Bringing HA Models to Data — State of Literature

e 99 percent of papers: calibration
* Remaining 1 percent; some form of estimation, usually GMM

¢ Usual calibration strategy:

¢ take some parameters from literature (e.g. Frisch elasticity of
labor supply, say from Chetty et al survey = 0.5-1)

e calibrate others internally to hit some aggregate moments
(e.g. discount rate p to match K/Y = 3)

e see e.g. Section 1.5 of these lecture notes:
http://www.econ.nyu.edu/user/violante/NYUTeaching/Macrotheory/
Springl4/LectureNotes/lecture7_14.pdf


http://www.econ.nyu.edu/user/violante/NYUTeaching/Macrotheory/Spring14/LectureNotes/lecture7_14.pdf
http://www.econ.nyu.edu/user/violante/NYUTeaching/Macrotheory/Spring14/LectureNotes/lecture7_14.pdf

Calibration vs Estimation

* Big debate in 90s
¢ Hansen-Heckman “The Empirical Foundations of Calibration”
¢ Browning-Hansen-Heckman “Micro Data and GE Models”
o Sargent iNterVieW netp: //uww. tonsargent . con/research/sargent interviewd. paf

* Things to note:

e calibration and estimation can be similar: (well-done)
calibration is basically GMM without standard errors

e perhaps more relevant distinction: full-information (e.g. MLE)
vs limited-information methods (e.g. GMM, calibration)?

e my impression: main reason for not estimating is
computational cost (having s.e.’s better than not having them)
¢ What may calibration miss?
 standard errors
¢ metric for judging model’s goodness of fit
e metric for comparing different models (model selection)


http://www.tomsargent.com/research/SargentinterviewMD.pdf

Parra-Alvarez, Posch & Wang



Parra-Alvarez, Posch and Wang

* Maximum likelihood estimation of Aiyagari-Bewley-Huggett model

e current version: mainly discuss identification issues

¢ So far: no data — though will ultimately use SCF



A prototypical heterogeneous agent model

Competitive Stationary Equilibrium

@ The optimal behavior of households is characterized by the system of
HJB equations:

pVi(a,e) = ulc(a,e))+ Va(ra+ we, — c(ap, e)) + ou (V (ar, en) — V (ar, e1))
pVia,en) = u(c(ayen))+ Vo(ras+ wen — c(a, en)) + o (V (ae, &) — V (a, ep))

@ The optimal behavior of firms is given by:

r=aK* L' w=(1-a)K*L™"

where
K = Z /atg (ag, er)day, L= Z / erg (ag, e;)day
ef,e{e,,eh,}g ete{el,eh}2

which link the dynamic and randomness that occurs at the micro level
with the deterministic behavior at the macro level.



A prototypical heterogeneous agent model

Distribution of endowments and wealth

@ The subdensities g (at, ;) correspond to the solution to the
(time-invariant) Fokker-Planck equations:

0 = —%[s(at,eog(at,em—¢hlg<at7ez>+¢lhg<at7eh>
0 = f%[swt,eh)g(at,ehn—mg(at,eh)+¢mg<at,el>.

@ The (unconditional) density of wealth is defined as:

g9(at) = g(as, &) + g (ar, en)
where the subdensities g (at, ;) = g (a: | e1) p (e;) and p (e;) is the
stationary distribution of a given efficiency level:

1

o1 (e) + 02 (c) (01 (e0) Lieymen + D2 (1) Lieimeny] -

p(et) =



MLE: A Simple Example to Refresh your Memories

e Suppose we know that the wealth distribution is Pareto with some
tail parameter 9
g(a) =6a=%"1, a>1

We don’t know 6 but we have an i.i.d sample a;,i =1,.., N

Let’s use the wealth sample to estimate 8 by maximum likelihood

Follow standard steps of MLE
1. form likelihood function £(6|a1, ..., an)
2. take logs

3. find 6 that maximizes log-likelihood function, log £(6|a1, ..., an)



MLE: A Simple Example to Refresh your Memories

e Step 1: form likelihood function

o for each 6, how likely it is to have observed the data that we
did in fact observe? Answer:
N

N
(@, .on) = [ ota) = [T oo
=1 i=1

e Step 2: take logs N

log L(6]ay, ..., an) = Zlog = Nlogf — (9+1)Zloga,

i=1
e Step 3: maximize log-likelihood function N
I 0lay, ... = Nlogd —(6+1 I -
max og L(0|ay, ..., an) méax{ 0g 6+ )Iz; oga,}
—1
FOC :

o=

N 1 N
loga, = 0= (/\/ Zl log a/)
= =

i=1



MLE: A Simple Example to Refresh your Memories

ML estimator makes intuitive sense, in particular

1 1
tail inequality = =N > log aj
=1

Another intuition: x := log a ~ fe~%%, i.e. exponential distribution

Mean of exponential distribution is

E[x] = %

ML estimator of 8 is based on sample analogue

1 o 1
= NZX,: NZIoga,-
i=1 i=1

5|



Likelihood Function in PPW

Let a = [ay,. .., ay]| be a sample of N i.i.d observations on individual
wealth and @ € ® C RF a vector of structural parameters. Recall that
the p.d.f of wealth can be computed as:

g(an|0)=g(an,e|0)+g(an,e|0), ¥Yn=1,...,N.
The log-likelihood function for a given sample is give by:

N
Ly(@]a)=7 logg(an|0),

n=1

whereas the maximum likelihood (ML) estimator is defined as:

Oy =argmax Ly (0] a).
0cO



Population parameters ()

0o = {7, p, ., 9, en, €1, dun, Pni}
Relative risk aversion, ~ 2.0000
Rate of time preference, p 0.0410
Capital share in production, « 0.3600
Depreciation rate of capital, & 0.0800
Endowment of high efficiency, e, 1.0000
Endowment of low efficiency, ¢,  0.1000
Demotion rate, ¢y, 0.6697
Promotion rate, ¢y 4.4644

In the model, time is measured in years and parameters should be
interpreted accordingly. Demotion and promotion rates computed from
Hugget (1993) who reports p (e, | €;) = 0.5 and p(ep | e) = 0.925 in a
model with six periods per year.



|dentification with GMM?
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* PPW: (p, a, 6) not identified from GMM targeting wealth Gini
e |s this really an argument against GMM?



Population Identification
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Distance function d(g(a|6),g(a|6o)). The graph shows the percentage deviation of

the L1 distance criterion as a function of the parameter space. The population values for

the structural parameters, 8¢, are represented by the dotted vertical line.




Population Identification
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Distance surface. The graph shows the percentage deviation of the L; distance function
for selected parameters as a function of the parameter space (top) and its respective
contour plot (bottom). "Xx" locates the true parameter values, and @ the maximum of the

distance surface, § = argmax d (6, 6p).




Small sample estimates
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Finite sample distribution of parameter estimates. The graph plots the histogram of
estimated parameters across M = 100 random samples of size N = 20000 generated from

the true data generating process. The vertical line denotes the true parameter value.




Sample identification

<104 4 x10! o x10* 4 x10!
1.13 E |
\ o4 ® \
3 2
| | -4 |
-1.135 | A |
5 -6 -3
| | |
1.14 | 6 | -8 |
| 7 | | -4
I af | o I
-1.145
L gl 1 12 1 5
1 2 005 01 o015 02 03 04 05 005 01 015 2
5 0 o 5
4 4 4 4
-1.128 10 .1 A0 -1.125 <10 -1.129 <10
113 11 113
| 12 | 1135 | |
-1.132
¢ ! [ s [ 1131 [
-1.134 | 18 | | |
| | -1.145 | -1.132 |
1136 14 ;
| | 115 | 1.133 |
1138 | s | 1.155 | |
114 I I 116 I e I
A.142 | 16 L 1.165 1 1135 1
005 0.1 015 02 025 05 1 15 2 6 04 06 08 1

el

Individual log-likelihood profile. The graph shows the log-likelihood function £ (0 | a)
for each 6 € 6 along a neighborhood of the its true value for N = 5000. The vertical line
denotes the true parameter value and ’x’ marks the maximum value of the log-likelihood

profile.




Calibration and estimation
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Log-likelihood profile contours for selected parameters. Log-likelihood function
L (0 | a) for selected parameters and N = 5000. Top contours as before. In bottom contours
« and § are miscalibrated to 0.5 and 0.1 respectively. "Xx" locates the true parameter values,

and @ the maximum of the log-likelihood.




Thoughts on Parra-Alvarez, Posch & Wang

1. PPW include parameters of income process (¢n;, din, €n, €) in
parameter vector 6 to be estimated

« different from typical strategy: estimate using panel data

2. How about using richer income process? Already know ahead of
time that two-state model has a counterfactual income distribution

3. PPW use only marginal distribution of wealth g(a). In practice,
typically have more data:

* how about using joint distribution of income, wealth g(a, z)?

¢ how about using joint distribution of income, wealth,
consumption (“3D inequality” e.g. from PSID)

* how about using panel data. For MLE: transition densities
f(at+s, Zt+s|ae, z¢) also satisfy Kolmogorov Forward equation



Other papers estimating
heterogeneous agent models



Estimation of HA Models without Aggregate Shocks

GMM estimation:

e Abbott, Gallipoli, Meghir and Violante (2016), “Education Policy
and Intergenerational Transfers in Equilibrium”

¢ Benhabib, Bisin and Luo (2016), “Wealth distribution and social
mobility in the US: A quantitative approach”

¢ Luo and Mongey (2016) “Student debt and job choice: Wages vs.
job satisfaction”

Maximum likelihood estimation:

¢ any other papers besides Parra-Alvarez, Posch & Wang?

Comments/open questions:
* above studies mostly use moments from cross-sectional data

e what about panel data?



Estimation of HA Models with Aggregate Shocks

* Goal: use time-series variation of higher-order moments in micro
data to identify shocks driving business cycles/effects of policies

¢ Winberry (2016), “A Toolbox for Solving and Estimating
Heterogeneous Agent Macro Models”

¢ Mongey and Williams (2016), “Accounting for Firm Dispersion

and Business Cycles”
¢ Typical approach: discrete time Reiter-type perturbation method

¢ use projection method (e.g. Chebyshev collocation) to solve
steady state, represent distribution as finite dimensional object

¢ IMHO much more complicated and “black-boxy” than
continuous-time finite-difference method

¢ estimate using Bayesian methodss

* subset of param’s estimated internally, subset fixed externally

¢ Estimation of model with aggregate shocks is also ultimate goal of
tools presented in Lecture 9 (Ahn-Kaplan-Moll-Winberry-Wolf)



Thanks for six fun weeks!



