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Plan

Firm heterogeneity, distribution and dynamics

1. motivating facts

2. workhorse model of firm dynamics: Hopenhayn (1992)

3. stopping time problems

4. Luttmer (2007)
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Motivating Facts
• So far: income and wealth distribution in macroeconomics

• Firm size distribution shares many similarities with income, wealth
distributions

• extremely skewed
• lots of heterogeneity conditional on other observables
• e.g. Chad Syverson: within typical 4-digit SIC industries 90th
percentile firm is twice as productive as 10th percentile firm

• other key references: work by John Haltiwanger, Steve Davis
and co-authors

• Tools for theoretically modeling heterogeneous firms are exactly the
same as those for modeling heterogeneous individuals

• state variable = cross-sectional distribution
• key ideas: stationary distribution & distributional dynamics
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Firm Size Distribution: Very Skewed and Fat Right Tail
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FIGURE I

Size Distribution of U. S. Firms in 2002
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Workhorse Model: Hopenhayn (1992)
• Will present my own version

• notes: http://www.princeton.edu/~moll/HACTproject/hopenhayn.pdf
• code: http://www.princeton.edu/~moll/HACTproject/hopenhayn.m

• For some good, concise lecture notes on original see
https://web.stanford.edu/~jdlevin/Econ%20257/Industry%20Dynamics.pdf

Also good discussion of Jovanovic 82, Olley-Pakes 96
• Before I forget, potentially confusing notation in Hopenhayn 92

• p.1130: “the total mass Mt = µt(S)”
• p.1132:“Let Mt denote the mass of entrants in period t”
• latter is one that’s used throughout

• Only dynamic decisions in Hopenhayn model: entry and exit
• Will walk you through two versions

1. mechanical entry (= assumption in Luttmer: “return process”)
2. optimal entry (= assumption in Hopenhayn) 5

http://www.princeton.edu/~moll/HACTproject/hopenhayn.pdf
http://www.princeton.edu/~moll/HACTproject/hopenhayn.m
https://web.stanford.edu/~jdlevin/Econ%20257/Industry%20Dynamics.pdf


Hopenhayn Model with Mechanical Entry
• Continuum of firms, heterogeneous in productivity z ∈ [0, 1], solve

v(z) = max
{nt}t≥0,τ

E0
[∫ τ
0

e−ρt(pf (zt , nt)− wnt − cf )dt + e−ρτv∗
]

dzt = µ(zt)dt + σ(zt)dWt , z0 = z.

• n: employment, w : wage rate
• f (z, n): production, p: price of final goods
• cf : per-period operating cost, v∗: scrap value

• Assumption: for each exiting firm, new entrant with z0 ∼ ψ(z)
• ⇒ mass of active firms constant, normalize to 1
• assume lowest z in support of ψ s.t. don’t immediately exit

• Equilibrium: exogenous product demand, labor supply to industry

p = D(Q), w = W (N), Q :=

∫ 1
0

q(z)g(z)dz, N :=

∫ 1
0

n(z)g(z)dz
6



Write this more compactly

• Continuum of firms, heterogeneous in productivity z ∈ [0, 1], solve

v(z) = max
τ
E0
[∫ τ
0

e−ρtπ(zt)dt + e
−ρτv∗

]
dzt = µ(zt)dt + σ(zt)dWt , z0 = z,

π(z) = max
n
{pf (z, n)− wn} − cf

• Assumption: for each exiting firm, new entrant with z0 ∼ ψ(z)
• ⇒ mass of active firms constant, normalize to 1
• assume lowest z in support of ψ s.t. don’t immediately exit

• Equilibrium: exogenous product demand, labor supply to industry

p = D(Q), w = W (N), Q :=

∫ 1
0

q(z)g(z)dz, N :=

∫ 1
0

n(z)g(z)dz
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Hopenhayn Model with Optimal Entry
• Continuum of firms, heterogeneous in productivity z ∈ [0, 1], solve

v(z) = max
τ
E0
[∫ τ
0

e−ρtπ(zt)dt + e
−ρτv∗

]
dzt = µ(zt)dt + σ(zt)dWt , z0 = z,

π(z) = max
n
{pf (z, n)− wn} − cf

• Previous slide: flow of entrants determined mechanically

• Now: flow of entrants satisfies free entry condition∫ 1
0

v(z)ψ(z)dz = ce

• ⇒ total mass of firms endogenous, cannot normalize it to one
8



3-Slide Discussion of Hopenhayn (1992)
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Stopping Time Problems
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Stopping Time Problems
• In lots of problems in economics, agents have to choose an
optimal stopping time

• Quite often these problems entail some form of non-convexity
• Examples:

• how long should a low productivity firm wait before it exits an
industry?

• how long should a firm wait before it resets its prices?
• when should you exercise an option?
• etc... Stokey’s book is all about these kind of problems

• These problems are very awkward in discrete time because you
run into integer problems

• Big payoff from working in continuous time
• Next: flexible algorithm for solving such problems, also works if
don’t have simple threshold rules and with states > 1 11



Exercising an Option: Deterministic Warmup

• Problem from chapter 6 of Stokey’s “Economics of Inaction”

• Plant has profits
π(z(t))

• z(t): state variable = stand in for demand, plant capacity etc
z(t) = z0 + µt ⇔ ż(t) = µ

• Can shut down plant at any time, get scrap value S, but cannot
reopen

• Problem: choose stopping time τ to solve

v(z0) = max
τ≥0

[∫ τ
0

e−rtπ(z(t))dt + e−rτS

]
• Assumptions to make sure τ∗ <∞:

π′(z) > 0, µ < 0, lim
z→−∞

π(z) < rS < lim
z→+∞

π(z)

12



Exercising an Option: Deterministic Warmup

• FOC

e−ρτ
∗
[π(z(τ∗))− rS] ≤ 0, with equality if τ∗ > 0

• Can write this in terms of cutoff b∗ = z(τ∗)

π(b∗) = rS

• Optimal stopping time is

τ∗ =

{
0, if z < b∗,

(b∗ − z)/µ, if z ≥ b∗

13



Exercising an Option: Stochastic Problem
• Problem: choose stopping time τ to solve

v(z) = max
τ≥0

E0
[∫ τ
0

e−ρtπ(zt)dt + e
−ρτS(zτ )

]
dzt = µ(zt)dt + σ(zt)dWt , z0 = z

• Same assumptions as before to ensure τ∗ <∞

• Analytic solution if µ(z) = µ̄, σ(z) = σ̄, S(z) = S̄, but not in
general

• Two approaches for tackling this problem

1. standard approach: “smooth pasting”
2. more powerful approach: HJB “Variational Inequality”

• Discuss these in turn
14



Exercising an Option: Standard Approach

• Assume scrap value is independent of z : S(z) = S̄
• Optimal policy = threshold rule: exit if zt falls below b

• Standard approach (see e.g. Stokey, Ch.6):

ρv(z) = π(z) + µ(z)v ′(z) +
σ2(z)

2
v ′′(z), z > b

with “value matching” and “smooth pasting” at b:
v(b) = S̄, v ′(b) = 0

• Derivation? See Appendix

• But things more complicated if
• S depends on z ...
• ... or if dimension > 1

• ⇒ can’t use threshold property
• want algorithm that works also in those cases 15



Exercising an Option: HJBVI Approach
• Denote Z = set of z such that don’t exit:

z ∈ Z : v(z)≥S(z), ρv(z) = π(z) + µ(z)v ′(z) + σ
2(z)
2 v ′′(z)

z ̸∈ Z : v(z) = S(z), ρv(z)≥π(z) + µ(z)v ′(z) + σ
2(z)
2 v ′′(z)

• Can write compactly as:

min

{
ρv(z)− π(z)− µ(z)v ′(z)−

σ2(z)

2
v ′′(z), v(z)− S(z)

}
= 0 (∗)

• Note: have used that following two statements are equivalent
1. for all z , either f (z) ≥ 0, g(z) = 0 or f (z) = 0, g(z) ≥ 0
2. min{f (z), g(z)} = 0 for all z

• (∗) is called “HJB variational inequality” (HJBVI)
• Important: did not impose smooth pasting

• instead, it’s a result: can prove that (∗) implies v ′(b) = S′(b)
• see e.g. Oksendal http://th.if.uj.edu.pl/~gudowska/dydaktyka/Oksendal.pdf (who
calls “smooth pasting” “high contact (or smooth fit) principle”) 16
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Finite Difference Scheme for solving HJBVI

• Codes
http://www.princeton.edu/~moll/HACTproject/option_simple_LCP.m,
http://www.mathworks.com/matlabcentral/fileexchange/20952

• Main insight: discretized HJBVI = Linear Complementarity Problem
(LCP) https://en.wikipedia.org/wiki/Linear_complementarity_problem

• Prototypical LCP: given matrix B and vector q, find x such that
xT(Bx+ q) = 0

x ≥ 0
Bx+ q ≥ 0

• There are many good LCP solvers in Matlab and other languages

• Best one I’ve found if B large but sparse (Newton-based):
http://www.mathworks.com/matlabcentral/fileexchange/20952
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Finite Difference Scheme for solving HJBVI

• Recall HJBVI

min

{
ρv(z)− π(z)− µ(z)v ′(z)−

σ2(z)

2
v ′′(z), v(z)− S(z)

}
= 0

• Without exit, discretize as

ρvi = πi + µi(vi)
′ +

σ2i
2
(vi)

′′ ⇔ ρv = π + Av

• With exit:
min{ρv − π − Av, v − S} = 0

• Equivalently:
(v − S)T(ρv − π − Av) = 0

v ≥ S
ρv − π − Av ≥ 0

• But this is just an LCP with x = v − S, B = ρI− A, q = −π + B!!
18



The solution satisfies smooth pasting even though we
didn’t impose it!

19



An Impulse Control Problem: Buying & Selling a Car
• Flow utility u(ct) + κdt , dt ∈ {0, 1} (car or no car)
• Buy car at p0, sell at p1 with p1 < p0

• When not buying/selling, wealth accumulates in standard fashion
ȧt = y + rat − ct

• Notation: vd(a) = value of wealth a, car ownership state d ∈ {0, 1}
• Problem of individual without car: choose ct and stopping time τ

v0(a) = max
{ct}t≥0,τ

∫ τ
0

e−ρtu(ct)dt + e
−ρτv∗0 (aτ )

ȧt = y + rat − ct , at ≥ a, a0 = a.

where v∗0 (a) = value of buying car

v∗0 (a) =

{
v1(a − p0), if a − p0 ≥ a
−∞, if a − p0 < a

• Symmetric problem for individual with car, value v1(a) 20



A Problem with an Indivisible Durable (a.k.a. a Car)

• System of HJBVI’s

0 = min{ρv0(a)−max
c

{
u(c) + v ′0(a)(y + ra − c)

}
, v0(a)− v∗0 (a)},

0 = min{ρv1(a)−max
c

{
u(c) + κ+ v ′1(a)(y + ra − c)

}
, v1(a)− v∗1 (a)}

• Discretize as

0 = min{ρv0 − u(v0)− A(v0)v0, v0 − v∗0 (v1)},
0 = min{ρv1 − u(v1) + κ− A(v1)v1, v1 − v∗1 (v0)}

• Solve using LCP solver

• Code: http://www.princeton.edu/~moll/HACTproject/car.m

21
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A Problem with an Indivisible Durable (a.k.a. a Car)
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Numerical Solution of Hopenhayn Model
http://www.princeton.edu/~moll/HACTproject/hopenhayn.pdf

http://www.princeton.edu/~moll/HACTproject/hopenhayn.m

23
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Hopenhayn Model with Mechanical Entry

• Write more compactly

v(z) = max
τ
E0
{∫ τ
0

e−ρtπ(zt)dt + e
−ρτv∗

}
dzt = µ(zt)dt + σ(zt)dWt , z0 = z,

π(z) = max
n
{pf (z, n)− wn} − cf

• Assumption: for each exiting firm, new entrant with z0 ∼ ψ(z)

• ⇒ mass of active firms constant, normalize to 1
• assume lowest z in support of ψ s.t. don’t immediately exit

24



Equations for Stationary Equilibrium, Mechanical Entry

• Denote Z = inaction region, i.e. set of z ’s such that don’t exit...
• ... and m = entry rate (by assumption also = exit rate)

0 = min

{
ρv(z)− v ′(z)µ(z)−

1

2
v ′′(z)σ2(z)− π(z), v(z)− v ∗

}
, all z ∈ (0, 1)

0 = −(µ(z)g(z))′ +
1

2

(
σ2(z)g(z)

)′′
+mψ(z), all z ∈ Z,

p = D(Q), w = W (N), Q =

∫
Z
q(z)g(z)dz, N =

∫
Z
n(z)g(z)dz

• Remains to determine m, find it from
∫
Z g(z, t)dz = 1 for all t

∂tg = A∗g +m(t)ψ(z) and
∫
Z
∂tg(z, t)dz = 0

⇒ m = −
∫
Z
(A∗g)(z)dz

• If threshold rule (stay when z ≥ b), then m = −12∂z
(
σ2(b)g(b)

)
25



Equations for Stationary Equilibrium with Optimal Entry

Now: Mass of entrants m pinned down by free entry condition

0 = min

{
ρv(z)− v ′(z)µ(z)−

1

2
v ′′(z)σ2(z)− π(z), v(z)− v ∗

}
, all z ∈ (0, 1)

0 = −(µ(z)g(z))′ +
1

2

(
σ2(z)g(z)

)′′
+mψ(z), all z ∈ Z,

ce =

∫ 1
0

v(z)ψ(z)dz

p = D(Q), w = W (N), Q =

∫
Z
q(z)g(z)dz, N =

∫
Z
n(z)g(z)dz

26



Equations for Stationary Equilibrium with Optimal Entry

Free-entry condition not particularly well behaved numerically⇒ replace

0 = min

{
ρv(z)− v ′(z)µ(z)−

1

2
v ′′(z)σ2(z)− π(z), v(z)− v ∗

}
, all z ∈ (0, 1)

0 = −(µ(z)g(z))′ +
1

2

(
σ2(z)g(z)

)′′
+mψ(z), all z ∈ Z,

m = m̄ exp

(
η

(∫ 1
0

v(z)ψ(z)dz − ce
))

, η, m̄ > 0

p = D(Q), w = W (N), Q =

∫
Z
q(z)g(z)dz, N =

∫
Z
n(z)g(z)dz

•
∫ 1
0 v(z)ψ(z)dz = ce is special case η →∞

• to see this, write as log(m/m̄)η =
∫ 1
0 v(z)ψ(z)dz − ce

• that is, Hopenhayn model has infinitely elastic supply of entrants
27



Discretization of KF equation
• Discretized KF equation is

0 =

I∑
j=1

Aj,igj +mψi , all i ∈ I

gi = 0, all i ̸∈ I
• Write this in matrix notation as

0 = ÃTg+mψ

• where Ãi ,j = Ai ,j for all columns in inaction region j ∈ I ...
• ... columns in exit region j ̸∈ I are replaced by a column of
zeros everywhere except for 1 on the diagonal

• hence 0 = ÃTg+mψ implies that gi = 0 for all i ̸∈ I

• ⇒ non-singular ÃT ⇒ can simply solve (no eigenvalue problem)
g = −(ÃT)−1mψ

28



Solution Algorithm
http://www.princeton.edu/~moll/HACTproject/hopenhayn.m

(i) Guess w0

(ii) 1. Guess p0

2. Given (pj , w k) solve the HJBVI equation. This yields v and
exit region Z

3. Given v , compute m from supply of entrants. To approximate
perfectly elastic supply of entrants, set η = 1, 000

4. Given exit region Z, and entry rate m, solve KF equation to
get g. Note that g will, in general, not integrate to one

5. Given g, compute Q & update p: pj+1 = (1− λp)pj + λpQ−ε

6. If pj+1 and Q−ε are close enough, go to iii, otherwise back to 2
(iii) Given g, compute N & update w : w k+1 = (1− λw )w k+1 + λwNϕ

(iv) If w k+1 and Nϕ are close enough, exit, otherwise back to ii
29
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Results: Value Function and Size Distribution

(e) Value function v(z) (f) Size distribution of active firms g(z)
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Luttmer (2007) – Short Version
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Luttmer (2007): Overview

• Firms are monopolistic competitors

• Permanent shocks to preferences and technologies associated
with firms

• Low productivity firms exit, new firms imitate and attempt to enter

• selection produces Pareto right tail rather than log-normal
• population productivity grows faster than mean of incumbents
• thickness of right tail depends on the difference
• Zipf tail when entry costs are high or imitation is difficult

32



Luttmer (2007): Key Mechanism for Pareto Distribution

• Exactly same logic as in Gabaix, Gabaix-Lasry-Lions-Moll

• Logarithm of size st follows “return process”/“exit with reinjection”

dst = µdt + σdWt

• assume µ < 0
• if st ever reaches b, exit and get reinjected at x > b

• ⇒ exponential tail for log size s, Pareto tail for size es

• More precisely, a double-Pareto distribution

• Remaining model ingredients only make economics nicer, model
less mechanical

33



Stationary Size Distribution, s = log size
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FIGURE II

Size Density Conditional on Initial Size
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3-Slide Discussion of Luttmer
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Appendix:
Smooth Pasting and All That
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Deterministic Problem: HJB Approach

Claim (Stokey, Proposition 6.2): The value function, V , and optimal
threshold, b∗, have the following properties:
(i) v satisfies the HJB equation

rV (z) = π(z) + V ′(z)µ, z ≥ b∗

V (z) = S, z ≤ b∗

(ii) V is continuous at b∗ (value matching)

lim
z↓b∗

V (z) = S

(iii) V ′ is continuous at b∗ (smooth pasting)

lim
z↓b∗

V ′(z) = 0

37



Intuitive Derivation

• Periods of length ∆t,

• Value of a firm with z0 = z :

V (z) = max{Ṽ (z), S}

• S: value of exiting

• Ṽ (z): value of staying in industry satisfying

Ṽ (z) = π(z)∆t + (1− r∆t)V (z + µ∆t)

38



Derivation: Value Matching limz↓b V (z) = S

• Consider some (not necessarily optimal) threshold b

• By definition of b:

V (z) =

Ṽ (z), z > b

S, z ≤ b

(Note: could write z ≥ b and z < b, would need to slightly change
argument below; just definition of b in any case.)

• Subtract (1− r∆t)Ṽ (z) from both sides and divide by ∆t

r Ṽ (z) = π(z) + (1− r∆t)
V (z + µ∆t)− Ṽ (z)

∆t

39



Derivation: Value Matching limz↓b V (z) = S
• Evaluate Ṽ at z = b − µ∆t, i.e. at an x just above the threshold
(recall µ < 0).

r Ṽ (b − µ∆t) = π(b − µ∆t) + (1− r∆t)
S − Ṽ (b − µ∆t)

∆t
• Want to take ∆t → 0. Note:

lim
∆t→0

Ṽ (b − µ∆t) = lim
z↓b

Ṽ (z)

• Proof by contradiction. Suppose limz↓b Ṽ (z) < S.

• then S−Ṽ (b−µ∆t)∆t →∞ and hence r Ṽ (b − µ∆t)→∞.
• but limz↓b Ṽ (z) =∞ contradicts limz↓b Ṽ (z) < S.

• Symmetric argument for limz↓b Ṽ (z) > S

• Since V (z) = Ṽ (z) for z > b, also limz↓b V (z) = S
• Note: this has to hold for any threshold b, also suboptimal ones.
Continuous problems have continuous value functions. 40



Derivation: Smooth Pasting limz↓b∗ V ′(z) = 0

• Now consider the optimal threshold choice.

• The value of staying, Ṽ , satisfies the Bellman equation
Ṽ (z) = π(z)∆t + (1− r∆t)max

{
Ṽ (z + µ∆t), S

}
• Consider the optimal threshold b∗. If it is indeed optimal, then

1. Ṽ (b∗) = S
2. Ṽ (b∗ + µ∆t) = S (recall that µ < 0 and so b∗ + µ∆t < b∗)

and therefore
Ṽ (b∗) = π(b∗)∆t + (1− r∆t)S = S

which implies
π(b∗) = rS (∗)

• Observation 1: if we are indifferent between stopping or not, flow
payoff from stopping must be same as flow payoff from continuing

41



Derivation: Smooth Pasting limz↓b∗ V ′(z) = 0

• Next, evaluating at b∗ − µ∆t

Ṽ (b∗ − µ∆t) = π(b∗ − µ∆t)∆t + (1− r∆t)S

From value matching Ṽ (b∗) = S,

Ṽ (b∗ − µ∆t)− Ṽ (b∗) = π(b∗ − µ∆t)∆t − r∆tS

and hence

Ṽ (b∗ − µ∆t)− Ṽ (b∗)
∆t

= π(b∗ − µ∆t)− rS

• Taking ∆t → 0 and using (∗)⇒ smooth pasting V ′(b∗) = 0

• Observation 2: If we are close to stopping we cannot be much
better off than stopping now, given Observation 1

42



Deterministic Problem: Extensions

• Suppose the scrap value is S(z) rather than S.

• And further that drift is µ(z) rather than µ

• Can use the same approach as above to show that

• Value Matching:

lim
z↓b∗

V (z) = S(b∗)

• Smooth Pasting:

lim
z↓b∗

V ′(z) = S′(b∗)

43



Luttmer (2007) – Long Version
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Luttmer (2007)

• Preferences:
• differentiated commodities with permanent taste shocks

• Technologies:
• at a cost, entrants draw technologies from some distribution
• fixed overhead labor, asymptotic constant returns to scale
• random productivity, quality growth.

45



Consumers

• A population Heηt with preferences over per-capita consumption
Cte

−ηt :
E0
∫ ∞
0

e−ρt
(Cte

−ηt)1−γ

1− γ dt

• where
Ct =

[∫
u1−βcβt (u)dMt(u)

]1/β
• Elasticity of substitution is σ = 1/(1− β)
• Demands

ct(u, p) =

(
p

Pt

)−1/(1−β)
uCt

where
Pt =

(∫
up−β/(1−β)dMt(u)

)−(1−β)/β
46



Firms

• Firms indexed by age a and date of birth t.

• Calendar time = t + a

• Production function
yt,a = zt,aLt,a

• Revenues

Rt,a = C
1−β
t+a (Zt,aLt,a)

β, Zt,a ≡ (u1−βt,a z
β
t,a)
1/β

• Zt,a: combined quality and technology shock

47



Firms

• Zt,a: combined quality and technology shock (“productivity”)
evolves according to

Zt,a = Z exp(θEt + θIa + σZdWt,a)

• That is, Zt,a is a geometric Brownian motion

dZt,a
Zt,a

= θEdt + θIda + σZdWt,a, Z0,0 = Z

• θE : growth of productivity of new firms

• θI : growth of productivity of incumbent firms

• θI − θE is key parameter.
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Firms

• Continuation requires λF units of labor per unit of time.

• Value of a firm:

Vt(Z) = max
L,τ
Et
∫ τ
0

e−ra(Rt,a − wt+a[Lt,a + λF ])da

• τ : stopping time
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Balanced Growth Path

• Will look for equilibria where a bunch of things are growing at a
constant growth rate κ

• Aggregate labor supply: Ht = Heηt

• Number of firms: Mt = Meηt

• Initial productivity Zt,0 = ZeθEt

• Total consumption Ct = Ceκt . Per capita Cte−ηt = Ce(κ−η)t .

• Revenues Rt,a = C1−βt+a (Zt,aLt,a)β also grow at κ.

• Growth rate
κ = θE +

(
1− β
β

)
η
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Production Decisions along BGP
• Firms maximize variable profits Rt,a − wt+aLt,a. Solution:

Rt,a − wt+aLt,a = (1− β)
(
βZt,a
wt+a

)β/(1−β)
Ct+a

• Therefore total profits can be written as
Rt,a − wt+aLt,a − wt+aλF = wt+aλF (esa − 1)

where sa ≡ S(Z) +
β

1− β

[
ln

(
Zt,a
Zt,0

− θEa
)]

and eS(Z) ≡
1− β
λF

C

w

(
βZ

w

)β/(1−β)
• sa: firm size relative to fixed costs. This is a Brownian motion

dsa = µda + σdWt,a

where µ ≡
β

1− β (θI − θE), σ =
β

1− βσZ
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Exit Decision: Stopping Time Problem

• Value of a firm is
Vt(Z) = wtλF V (S(Z))

where
V (s) = max

τ
E
[∫ τ
0

e−(r−κ)a(esa − 1)
]

• Stopping time problem⇒ threshold policy: shut down when s falls
below b.

• For s > b, the HJB equation holds

(r − κ)V (s) = es − 1 + V ′(s)µ+
1

2
V ′′(s)σ2

• b determined by value matching and smooth pasting

V (b) = 0, V ′(b) = 0
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Exit Decision: Stopping Time Problem

• Can show: exit barrier determined by

eb =

(
ξ

1 + ξ

)(
1−

µ+ σ2/2

r − κ

)

where ξ ≡
µ

σ2
+

√( µ
σ2

)2
+
r − κ
σ2/2

and the HJB equation has solution

V (s) =
1

r − κ

(
ξ

1 + ξ

)(
es−b − 1−

1− e−ξ(s−b)

ξ

)
, s ≥ b

• Faster aggregate productivity growth θE ↑ ⇒ µ ∝ θI − θE ↓ ⇒ b ↑,
i.e. incumbents more likely to exit.
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Entry

• Labor cost of an arrival rate of ℓt entry opportunities per unit of
time:

LE,t = λEℓt

• An entry opportunity yields a draw Z from a distribution J

• Zero profit condition

λE = λF

∫
V (S(Z))dJ(Z)

• For now: J exogenous
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Kolmogorov Forward Equation

• Density of measure of firms of age a and size s at time t

f (a, s, t) = m(a, s)Ieηt

• The KFE is

∂f (a, s, t)

∂t
= −

∂

∂a
f (a, s, t)−

∂

∂s
[µf (a, s, t)] +

1

2

∂2

∂s2
[σ2f (a, s, t)]

• Note: unit drift of age da = dt

• Substituting in f (a, s, t) = m(a, s)Ieηt yields

∂m(a, s)

∂a
= −ηm(a, s)−

∂

∂s
[µm(a, s)] +

1

2

∂2

∂s2
[σ2m(a, s)]
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Boundary Conditions

• Denote size distribution of entering firms by G(s), derived from
J(Z) = G(S(Z))

• First boundary condition: at age zero∫ s
b

m(0, x)dx = G(s)− G(b) all s > b

or more intuitively in terms of the density g(s) = G′(s)

m(0, s) = g(s), all s > b

• Second boundary condition: at the exit threshold

m(a, b) = 0, all a > 0
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Boundary Conditions

• Lemma 1 the solution to the KFE subject to the boundary
conditions is

m(a, s) =

∫ ∞
b

e−ηaψ(a, s|x)dG(x)

ψ(a, s|x) = 1

σ
√
a

[
ϕ

(
s − x − µa
σ
√
a

)
− e−µ(x−b)/(σ

2/2)ϕ

(
s + x − 2b − µa

σ
√
a

)]

• where ϕ is the standard normal probability density.

• ψ(a, s|x) is the density of survivors at age a with size s of the
cohort that entered with the same initial size x (not a p.d.f.)
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Life of a Cohort: evolution of m(a, s)
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Aside: Practical Advice

• Question: how to find solutions for these kinds of ODEs/PDEs?

• Answer: there is a collection of known solutions to a big number
of ODEs/PDEs. This one apparently from Harrison (1985, p.46)

• if you ever encounter an ODE or PDE that you need to solve, plug
into Mathematica (function DSolve). Knows all known
solutions.
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Size Distribution
• Want to obtain size distribution. Almost there.

• Denote by π(a, s|x) the probability density of survivors at age a
with size s of the cohort that entered with the same initial size x
(proportional to ψ(a, s|x))

π(a, s|x) =

(
1− e−α∗(x−b)

η

)−1
e−ηaψ(a, s|x)

• Integrate this over all ages, a, to get density conditional on initial
size

π(s|x) ∝ e−α(s−b)min
{
e(α+α∗)(s−b) − 1, e(α+α∗)(x−b) − 1

}
• Density of es is our friend the double Pareto distribution. Can write
in a better way.

• From fact: if s has an exponential distribution, then es has a Pareto
distribution.
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Special Case: η = 0

• when η = 0, then the tail exponents are α∗ = 0 and

α = −
µ

σ2/2
=

θE − θI(
β
1−βσ

2
Z/2

)
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