Life-Cycle Wage Growth Across Countries

David Lagakos UCSD Benjamin Moll Princeton

Tommaso Porzio Yale Nancy Qian Yale

Todd Schoellman ASU

Northwestern, 18 April 2016

Life-Cycle Human Capital Accumulation Across Countries

Lessons from U.S. Immigrants

David Lagakos UCSD Benjamin Moll Princeton

Tommaso Porzio Yale Nancy Qian Yale

Todd Schoellman ASU

Northwestern, 18 April 2016

Document new fact: experience-wage profiles in rich countries are steeper than in poor countries

- \sim twice as steep
- wages double in rich countries, increase by 50% in poor countries
- based on representative large-sample micro data from 17 countries – better data than previous studies

Why Care?

- How life-cycle wage growth differs across countries may help us understand cross-country income differences
- Key for evaluating importance of cross-country differences in
 - human capital accumulation

Manuelli-Seshadri, Klenow-RodriguezClare, Bils-Klenow, Caselli, ...

- labor market frictions (job ladder) Burdett, Burdett-Mortensen, Jovanovic, ...
- Hope: use profiles to discipline theories, available from my website
- Illustration of finding's quantitative bite: development accounting
 - how much of income differences due to K and H?
 - current consensus: K&H account for ~ 40%, TFP for ~ 60%
 - same exercise but assuming profiles reflect "life-cycle H": increases contribution of K&H from ~ 40% to ~ 60%

So what's the mechanism?

- Why are profiles flatter in poor countries?
 - human capital accumulation
 - labor market frictions (job ladder)
 - ...
- Provide two pieces of (tentative) evidence:
 - 1. from same data: additional moments (variance profiles etc)
 - 2. from alternative data: wage profiles of U.S. immigrants
- These point to theories of human capital accumulation

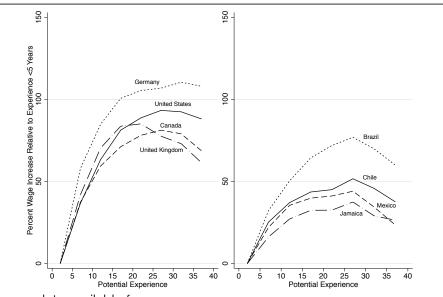
Data

- Nationally representative surveys with detailed wage and hours data:
 - Australia, Bangladesh, Brazil, Canada, Chile, France, Germany, Guatemala, India, Indonesia, Jamaica, Mexico, Peru, South Korea, United Kingdom, United States, Uruguay, Vietnam
- Focus on core set of 8 countries with repeated cross-sections spanning 15+ years
- Limitation: very poorest countries not in sample.

Sample

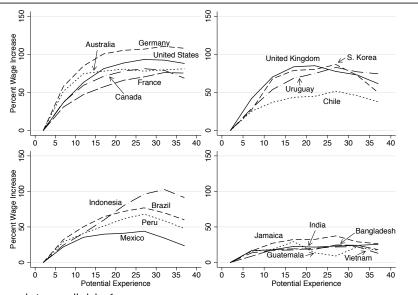
- Focus on full time male wage earners
 - Income of self-employed is payment to labor income *and* capital income (Gollin, 2002); host of other measurement issues (Deaton, 1997); potential experience harder to interpret for female and part-time workers
- Wage = $\frac{\text{labor earnings}}{\text{hours}}$
 - Majority of countries: earnings last month & hours last week
- · Later look at females, part time, self employed

- Measure lifecycle using "potential experience"
- Definition


$$experience := \begin{cases} age - schooling - 6, & \text{ if } schooling \ge 12\\ age - 18, & \text{ if } schooling < 12 \end{cases}$$

- That is, years since turned 18 or finished school
- Keep individuals with $0 \le experience \le 40$

Lifecycle Wage Growth


- Group workers into 5-year experience bins (0-4, 5-9, etc)
- Compute average wages by bin relative to 0-4 bin
- Report simple averages across years of data

Core Countries

data available from http://www.princeton.edu/~moll/research.htm

All Countries

data available from http://www.princeton.edu/~moll/research.htm

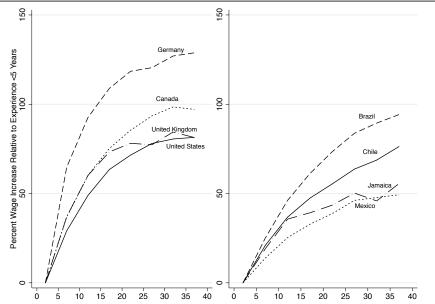
- No controls for schooling
- Age-cohort-time identification problem

- Consider individual *i* in cohort *c* at time *t*
- Estimate equations of the form:

$$\log w_{ict} = \alpha + g(s_{ict}) + f(x_{ict}) + \gamma_t + \psi_c + \varepsilon_{ict}$$

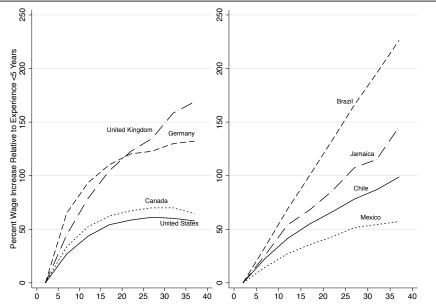
- w_{ict}: wages
- s_{ict} : schooling; x_{ict} : experience.
- γ_t : time effect, ψ_c : cohort effect
- Goal: estimate $f(\cdot)$ and assess how it varies across countries

• Assume $g(s) = \theta s$, but fully flexible $f(\cdot)$


$$\log w_{ict} = \alpha + \theta s_{ict} + \sum_{x \in X} \phi_x D_{ict}^x + \gamma_t + \psi_c + \varepsilon_{ict}$$

where D_{ict}^{x} is a dummy for experience group $x \in X = \{5-9, 10-14, ...\}$

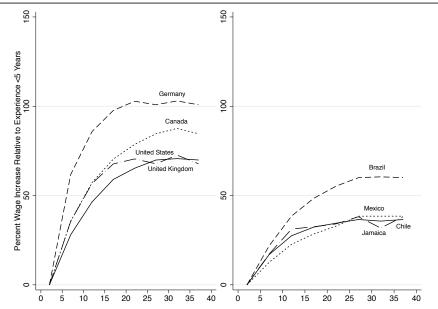
- Pointwise identification of f(x) via the $\{\phi_x\}$
- Cannot estimate as is, due to well-known collinearity problem


- 1. Time/cohort controls a la Hall (1968), Deaton (1997)
 - Focus on core countries, which have repeated cross sections spanning 15+ years
 - Assume that all growth is due either to time or cohort effects
- 2. New approach based on Heckman, Lochner and Taber (1998)
 - Assume no wage gains due to experience in final working years
 - Consistent with models of lifecycle H accumulation or search

Deaton-Hall Profiles: All Growth Due to Time

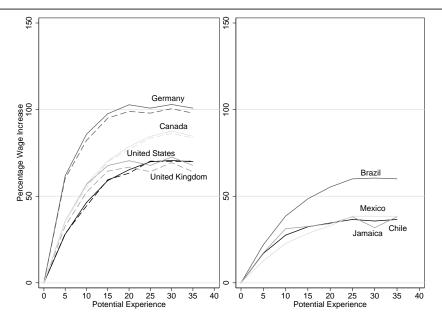
18

Deaton-Hall Profiles: All Growth Due to Cohort

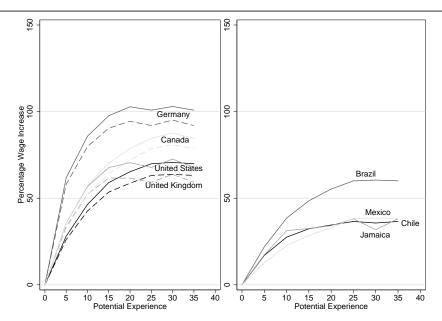

19

- Just guessing about relative roles of cohort and time
- Same roles of cohort and time in all countries?
- Hard to imagine world without strong time effects

Heckman-Lochner-Taber (HLT) Approach


- Assume no wage gains due to experience in last working years (e.g. 35-40 or 30-40 years of potential experience)
- With this assumption, and using repeated cross sections, can identify experience effects from cohort and time
- Intuition: follow different cohorts over time; wage growth from years 1999 to 2000 identified from oldest cohort's wage growth

Heckman-Lochner-Taber (HLT) Profiles



22

HLT Profiles: Robustness to Age Heaping

HLT Profiles: Robustness to Education Measurement

Selection?

- Concern:
 - in rich countries, less productive workers select out of wage employment as they age and/or...
 - ... in poor countries, less productive workers select into wage-employment as they age
- Examine using panel data from Mexico and U.S. (FLS and PSID)

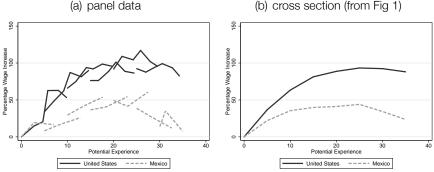
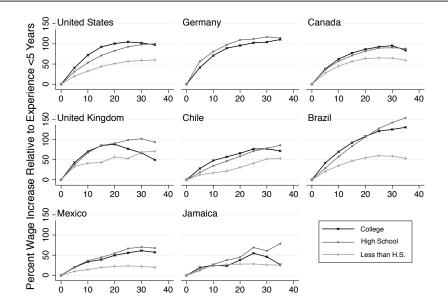


Table 5: Robustness

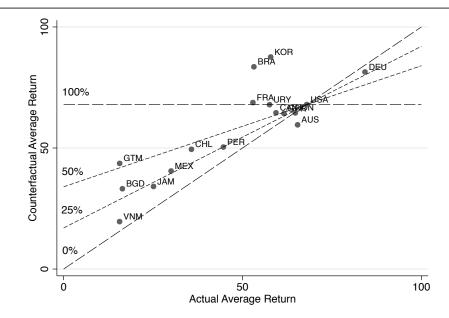
Height at 20-24 Years Experience, HLT Profiles

		Rich	Poor	Rich - Poor
(1)	Baseline	79.3	39.2	40.1**
(2)	Experience at 16	82.1	45.8	36.2**
(3)	Constructed experience	90	43.5	46.6^{**}
(4)	Measurement error: age	76.5	39.2	37.3^{**}
(5)	Measurement error: education	71.7	39.2	32.5^{**}
(6)	Measurement error: age and education	71.2	39.2	32.0^{**}
(7)	Include Self-Employed	80.3	36.6	43.6**
(8)	Include Public-Sector Employees	80.4	42.2	38.2^{**}
(9)	Include women	70	29.1	41**
(10)	Constructed experience, men and women	76.6	25.5	51.1**
(11)	Include Part-Time (20+ hours)	83	38.2	44.8**
(12)	Include Part-Time $(> 0 \text{ hours})$	84.8	36.7	48.1**
(13)	Constructed experience, incl. Part-Time	100	42	58.0**

Lifecycle Wage Growth Across Countries


• Punchline: less lifecycle wage growth in poor countries

• Results present multiple assumptions about role of cohort and time, numerous alternative sample restrictions


• Some modest role for interactions between schooling and experience

Interactions Between Schooling and Experience

Experience-Wage Profiles by Education Level

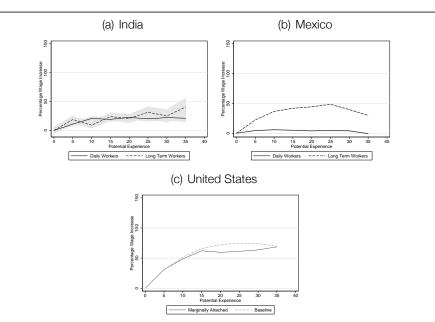
Accounting for Aggregate Experience-Wage Profiles

Distinguishing Between Mechanisms (new!)

- 1. human capital accumulation
- 2. search and matching/job ladder
- 3. long-term contracts with $w \neq MPL$
- 4. what else?

Large literature studies rel. importance of 1 to 3 in U.S./rich countries Topel-Ward, Rubinstein-Weiss, Altonji-Smith-Vidangos, Bagger-Fontaine-PostelVinay-Robin, ...

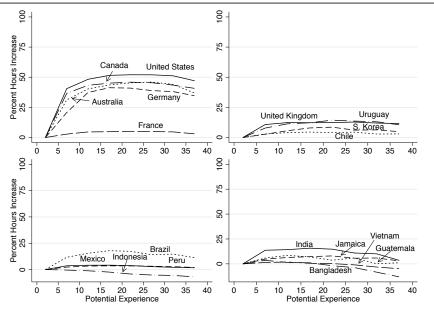
Moments we would like to look at

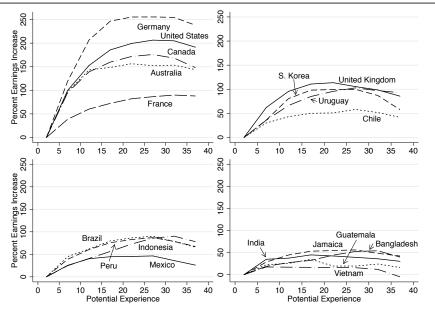

- search and matching/job ladder
 - data on job-to-job transitions
- long-term contracts
 - tenure profiles
- problem: both require panel data (or matched employer-employee data) which we don't have

Moments we can look at

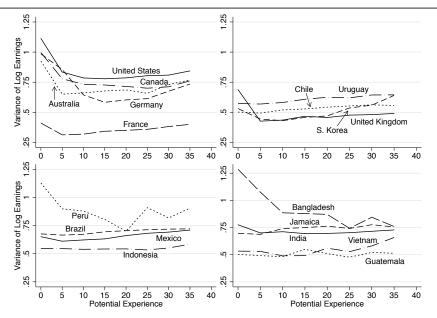
- profiles for particular groups of workers
 - workers with short-term contracts \Rightarrow long-term contracts?
 - ...
- hours and earnings profiles
 - human capital, long-term contracts
- variance profiles
 - human capital

- Long-term contracts \Rightarrow flatter profiles in poor countries if
 - $w \neq MPL$ and wages front-loaded in poor countries
 - $w \neq MPL$ and wages back-loaded in rich countries
- a priori reason to be skeptical: median tenure in U.S. = 4.6 years (BLS)
- Nevertheless went through survey codebooks to identify workers for which long-term contracts, tenure concerns seem unlikely


Workers with Short-Term Contracts


Two predictions of simple human capital theories (Ben-Porath,...):

- 1. time investment into H declines over life-cycle
 - if hours worked reflect time not investing
 - steep hours profiles in rich countries
 - flat hours profiles in poor countries
- 2. Var(log earnings) are U-shaped Mincer, Polachek, Rubinstein-Weiss
 - individuals differ in "learning ability"
 - steep profiles start below flat ones and cross ("overtaking age")


Lifecyle Hours Profiles

Lifecyle Earnings Profiles

Lifecyle Variance Profiles (within education groups)

40

Summary

Additional moments from our data

- not supportive of long-term contracts
- · consistent with human capital theories, not definitive
- inconclusive about search and matching/job ladder

Next: bring another dataset to the table

Lessons from U.S. Immigrants

Study returns to experience for immigrants in the U.S.

• foreign experience, but also U.S.-acquired experience

Advantages:

• common labor market, institutions, data set

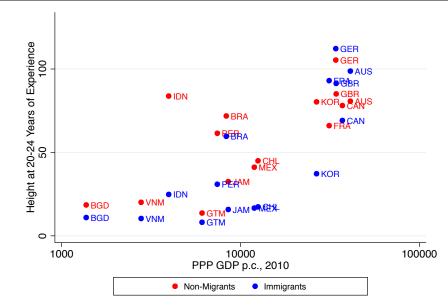
Challenges:

• immigrants may be selected, suffer skill loss

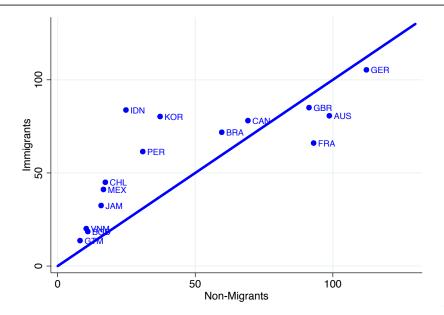
- 1. Return to foreign experience is much lower for poor country immigrants, similar to that for non-migrants
- 2. Return to U.S. experience is modestly lower
- 3. Return to U.S. experience for U.S.-educated immigrants is independent of birth country

Evidence leads us to a human capital interpretation:

- Less human capital formation through experience in poor countries
- Part of this effect is explained by the work environment
- Part of this effect stems from school type/quality


Data: 1980–2000 Census, 2005–12 ACS

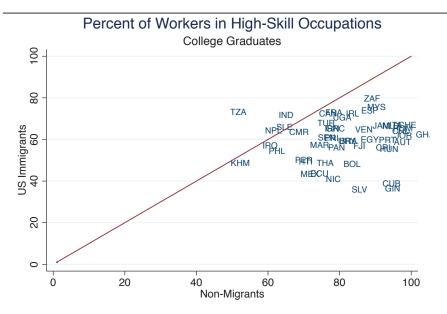
- Immigrant: born outside the fifty states
- Restrictions: employed wage worker, 0-45 years experience
- · Positive income, valid responses to other key variables


Nice feature: extremely large sample

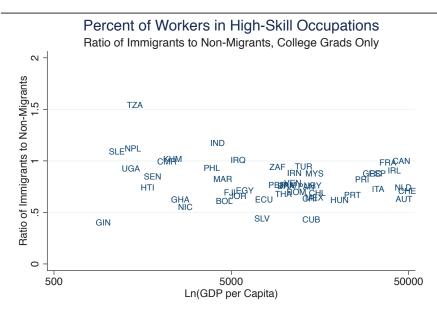
- 1.6 million immigrants, 120 birth countries
- 102 countries with 1000+; 29 with 10,000+
- Wide variety of controls

Fact 1: Returns Similar for Immigrants, Non-Migrants

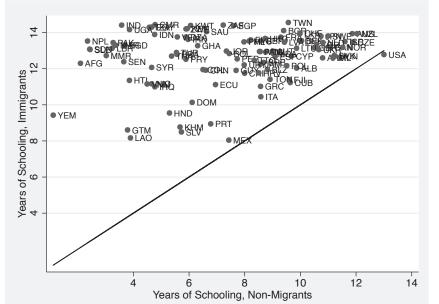
Fact 1: Returns Similar for Immigrants, Non-Migrants


Simplest explanation:

• Less lifecycle human capital accumulated in poor countries.


Alternative explanation:

- Non-migrant returns are biased
 - Labor market frictions, implicit contracts, measurement error
- Returns for immigrants biased
 - Selection, skill transferability
- These biases affect only poor countries, negatively, by same magnitude


Fact 2: No Relation Between Income, "Skill Transfer"

Fact 2: No Relation Between Income, "Skill Transfer"

Fact 3: Schooling Selection Declines in Income

Development Accounting

Development Accounting

- So far, new fact: experience-wage profiles flatter in poor countries than rich countries
- Now: development accounting exercise
 - same as previous literature ...
 - except returns to experience vary across countries
- Conclusion: Importance of *H* now 60%, rather than 40%

- Use same accounting method as Caselli (2005).
- Real GDP in a country

$$Y = K^{\alpha} (AH)^{1-\alpha}$$

- Assume $\alpha = 1/3$.
- Re-construct Caselli's *success*₁ measure:

$$Y_{KH} = K^{\alpha} H^{1-\alpha}$$

$$success_1 = \frac{var(\ln Y_{KH})}{var(\ln Y)}$$

Human Capital Measure	$Success_1$	$Slope(log(Y_{KH}), log(GDP))$
Schooling	0.40	0.53
Experience	0.40	0.56
Schooling + Experience	0.63	0.65

▶ Cohort & Time Effects

- Less lifecycle wage growth in poor countries
- Some evidence in favor of human capital explanation
- Through lens of development accounting framework: H and K account for $\sim 60\%$ of income differences, not $\sim 40\%$
- Priority for future work: panel data for poor countries

Altonji-Smith-Vidangos using PSID

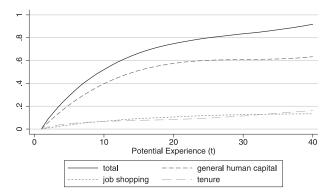


FIGURE 1.—Decomposing the experience profile of wages. Baseline model, full SRC sample. The figure displays the model's decomposition of wage growth over a career (or the experience profile of log wages) into the contributions of job shopping (the mean value of the job-specific wage component ν), the accumulation of tenure (the contribution of the mean value of tenure on the wage experience profile), and the accumulation of general human capital.