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Motivation

• Key development over last 30 years: incorporation of explicit
heterogeneity into macro models

• Welcome development because:

1. can bring micro data to table to discipline macro theories
2. can talk about welfare implications of shocks, policies
3. aggregate implications often differ from rep agent models

• Despite increasing popularity of heterogeneous agent models:

1. very few theoretical results, almost everything numerical
2. even numerical analyses can be difficult, costly
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This Paper: solving het. agent model = solving PDEs
• We recast Aiyagari-Bewley-Huggett model in continuous time
⇒ boils down to system of PDEs

• Take advantage of this to make two types of contributions:

• New theoretical results:
1. analytics: consumption, saving, MPCs of the poor
2. closed-form for wealth distribution with 2 income types
3. unique stationary equilibrium if IES ≥ 1 (sufficient condition)
4. characterization of “soft” borrowing constraints (skip today)

• Computational algorithm:
• simple, efficient (think 0.25 seconds), portable
• particularly well-suited for problems with non-convexities ...
• ... and transition dynamics
• codes: http://www.princeton.edu/~moll/HACTproject.htm 3
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Solving het. agent model = solving PDEs

• More precisely: a system of two PDEs
1. Hamilton-Jacobi-Bellman equation for individual choices
2. Kolmogorov Forward equation for evolution of distribution

• Many well-developed methods for analyzing and solving these

• Apparatus is very general: applies to any heterogeneous agent
model with continuum of atomistic agents
1. heterogeneous households (Aiyagari, Bewley, Huggett,...)

2. heterogeneous producers (Hopenhayn,...)

• can be extended to handle aggregate shocks (Krusell-Smith,...)

• “When Inequality Matters for Macro and Macro Matters for
Inequality” (with Ahn, Kaplan, Winberry & Wolf)
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Workhorse Model of Income and Wealth
Distribution in Macroeconomics
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Workhorse Model of Income and Wealth Distribution

Households are heterogeneous in their wealth a and income y , solve

max
{ct}t≥0

E0
∫ ∞
0

e−ρtu(ct)dt s.t.

ȧt = yt + rat − ct
yt ∈ {y1, y2} Poisson with intensities λ1, λ2
at ≥ a

• ct : consumption
• u: utility function, u′ > 0, u′′ < 0
• ρ: discount rate
• r : interest rate
• a ≥ −y1/r if r > 0: borrowing limit e.g. if a = 0, can only save

Later: carries over to yt = more general processes, e.g. diffusion

Equilibrium (Huggett): bonds in fixed supply, i.e. aggregate at = fixed
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Typical Consumption and Saving Policy Functions
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Typical Stationary Distribution
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Equations for Stationary Equilibrium

ρvj(a) = max
c
u(c) + v ′j (a)(yj + ra − c) + λj(v−j(a)− vj(a)) (HJB)

0 = −
d

da
[sj(a)gj(a)]− λjgj(a) + λ−jg−j(a), (KF)

sj(a) = yj + ra − cj(a) = saving policy function from (HJB),∫ ∞
a

(g1(a) + g2(a))da = 1, g1, g2 ≥ 0

S(r) :=

∫ ∞
a

ag1(a)da +

∫ ∞
a

ag2(a)da = B, B ≥ 0 (EQ)

• The two PDEs (HJB) and (KF) together with (EQ) fully characterize
stationary equilibrium Derivation of (HJB) (KF)
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Transition Dynamics

• Needed whenever initial condition ̸= stationary distribution

• Equilibrium still coupled systems of HJB and KF equations...

• ... but now time-dependent: vj(a, t) and gj(a, t)

• See paper for equations

• Difficulty: the two PDEs run in opposite directions in time

• HJB looks forward, runs backwards from terminal condition
• KF looks backward, runs forward from initial condition
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Borrowing Constraints?

• Q: where is borrowing constraint a ≥ a in (HJB)?
• A: “in” boundary condition

• Result: vj must satisfy
v ′j (a) ≥ u′(yj + ra), j = 1, 2 (BC)

• Derivation:
• for borrowing constraint not to be violated, need

sj(a) = yj + ra − cj(a) ≥ 0 (∗)
• the FOC still holds at the borrowing constraint

u′(cj(a)) = v
′
j (a) (FOC)

• (∗) and (FOC)⇒ (BC)

• See slides on viscosity solutions for more rigorous discussion
http://www.princeton.edu/~moll/viscosity_slides.pdf 11
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Plan

• New theoretical results:
1. analytics: consumption, saving, MPCs of the poor

2. closed-form solution to KF equation with 2 income types

3. unique stationary equilibrium if IES ≥ 1 (sufficient condition)

4. “soft” borrowing constraints (skip today)
Note: for 1., 2. and 4. analyze partial equilibrium with r < ρ

• Computational algorithm:

• problems with non-convexities

• transition dynamics
12



Result 1: Consumption, Saving Behavior of the Poor
Consumption/saving behavior near borrowing constraint depends on:
1. tightness of constraint
2. properties of u as c → 0

Assumption 1:
The coefficient of absolute risk aversion R(c) := −u′′(c)/u′(c) remains
finite as a→ a

−
u′′(y1 + ra)

u′(y1 + ra)
<∞

• will show: A1⇒ borrowing constraint “matters” (in fact, it’s an⇔)
How to read A1?

• “standard” utility functions, e.g. CRRA, satisfy −u
′′(0)
u′(0) =∞

• hence for standard utility functions A1 equivalent to a > −y1/r , i.e.
constraint matters if it is tighter than “natural borrowing constraint”

• but weaker: e.g. if u′(c) = e−θc , constraint matters even if a = − y1r 13



Result 1: Consumption, Saving Behavior of the Poor

Rough version of Proposition: under A1 policy functions look like this
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Result 1: Consumption, Saving Behavior of the Poor

Proposition: Assume r < ρ, y1 < y2 and that A1 holds.
Then saving and consumption policy functions close to a = a satisfy

s1(a) ∼ −
√
2ν1
√
a − a

c1(a) ∼ y1 + ra +
√
2ν1
√
a − a

c ′1(a) ∼ r +
1

2

√
ν1

2(a − a)

where ν1 = constant that depends on r, ρ, λ1, λ2 etc – see next slide

Note: “f (a) ∼ g(a)” means lima→a f (a)/g(a) = 1, “f behaves like g close to a”
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Result 1: Consumption, Saving Behavior of the Poor
Corollary: The wealth of worker who keeps y1 converges to borrowing
constraint in finite time at speed governed by ν1:

a(t)− a ∼
ν1
2
(T − t)2 , T := “hitting time” =

√
2(a0−a)
ν1
, 0 ≤ t ≤ T

Proof: integrate ȧ(t) = −
√
2ν1
√
a(t)− a
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speed = ν1 =
(ρ− r)u′(c1) + λ1(u′(c1)− u′(c2))

−u′′(c1)
≈ (ρ− r)IES(c1)c1 + λ1(c2 − c1) 16



Paper: Two special cases with closed-form solutions
• CARA: A1 holds, hit constraint a(t) = ν

2 (T − t)
2, ν := ρ−r

θ
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• CRRA & a = − yr : A1 violated, approach constraint asymptotically
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Marginal Propensities to Consume and Save

• So far: have characterized c ′j (a) ̸= MPC over discrete time interval
• Definition: The MPC over a time period τ is given by

MPCj,τ (a) = C′j,τ (a), where

Cj,τ (a) = E
[∫ τ
0

cj(at)dt|a0 = a, y0 = yj
]

• Lemma: If τ sufficiently small so that no income switches, then
MPC1,τ (a) ∼ min{τc ′1(a), 1 + τr}

Note: MPC1,τ (a) bounded above even though c ′1(a)→∞ as a ↓ a

• If new income draws before τ , no more analytic solution

• But straightforward computation using Feynman-Kac formula
18



Using the Formula for ν1 to Better Understand MPCs
• Consider dependence of low-income type’s MPC1,τ (a) on y1

Low Income Realization y1
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• Why hump-shaped?!? Answer: MPC1,τ (a) proportional to

c ′1(a) ∼ r +
1

2

√
ν1

2(a − a) , ν1 ≈ (ρ− r)
1

γ
c1 + λ1(c2 − c1)

and note that c1 = y1 + ra
• Can see: increase in y1 has two offsetting effects 19



Result 2: Closed-Form Solution to KF Equation

• Recall equation for stationary distribution

0 = −
d

da
[sj(a)gj(a)]− λjgj(a) + λ−jg−j(a) (KF)

• Lemma: the solution to (KF) is

gj(a) =
κj
sj(a)

exp

(
−
∫ a
a

(
λ1
s1(x)

+
λ2
s2(x)

dx

))
with κ1, κ2 pinned down by gj ’s integrating to one

• Features of wealth distribution:
• Dirac point mass of type y1 individuals at constraint G1(a) > 0
• thin right tail: g(a) ∼ ξ(amax − a)λ2/ζ2−1, i.e. not Pareto
• see paper for more

• Later in paper: extension with Pareto tail (Benhabib-Bisin-Zhu)
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Result 2: Closed-Form Solution to KF Equation
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General Equilibrium: Existence and Uniqueness
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Increase in r from rL to rH > rL
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Stationary Equilibrium

r

r = ρ

S(r)

B

a = a

Asset Supply S(r) =

∫ ∞
a

ag1(a; r)da +

∫ ∞
a

ag2(a; r)da

• Proposition: a stationary equilibrium exists
24



Result 3: Uniqueness of Stationary Equilibrium

Proposition: Assume that the IES is weakly greater than one

IES(c) := − u
′(c)

u′′(c)c
≥ 1 for all c ≥ 0,

and that there is no borrowing a ≥ 0. Then:

1. Individual consumption cj(a; r) is strictly decreasing in r

2. Individual saving sj(a; r) is strictly increasing in r

3. r ↑⇒ CDF Gj(a; r) shifts right in FOSD sense

4. Aggregate saving S(r) is strictly increasing⇒ uniqueness

Note: holds for any labor income process, not just two-state Poisson
25



Uniqueness: Proof Sketch

• Parts 2 to 4 direct consequences of part 1 (cj(a; r) decreasing in r )

• ⇒ focus on part 1: builds on nice result by Olivi (2017) who
decomposes ∂cj/∂r into income and substitution effects

• Lemma (Olivi, 2017): c response to change in r is

∂cj(a)

∂r
=

1

u′′(c0)
E0
∫ T
0

e−
∫ t
0 ξsdsu′(ct)dt︸ ︷︷ ︸

substitution effect<0

+
1

u′′(c0)
E0
∫ T
0

e−
∫ t
0 ξsdsu′′(ct)at∂actdt︸ ︷︷ ︸

income effect>0

where ξt := ρ− r + ∂act and T := inf{t ≥ 0|at = 0} = time at which hit 0

• We show: IES(c) := − u′(c)
u′′(c)c ≥ 1⇒ substitution effect dominates

⇒ ∂cj(a)/∂r < 0, i.e. consumption decreasing in r

26



Computations for
Heterogeneous Agent Model
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Computational Advantages relative to Discrete Time

1. Borrowing constraints only show up in boundary conditions
• FOCs always hold with “=”

2. “Tomorrow is today”
• FOCs are “static”, compute by hand: c−γ = v ′j (a)

3. Sparsity
• solving Bellman, distribution = inverting matrix
• but matrices very sparse (“tridiagonal”)
• reason: continuous time⇒ one step left or one step right

4. Two birds with one stone
• tight link between solving (HJB) and (KF) for distribution
• matrix in discrete (KF) is transpose of matrix in discrete (HJB)
• reason: diff. operator in (KF) is adjoint of operator in (HJB) 28



Computations for Heterogeneous Agent Model

• Hard part: HJB equation

• Easy part: KF equation. Once you solved HJB equation, get KF
equation “for free”

• System to be solved
ρv1(a) = max

c
u(c) + v ′1(a)(y1 + ra − c) + λ1(v2(a)− v1(a))

ρv2(a) = max
c
u(c) + v ′2(a)(y2 + ra − c) + λ2(v1(a)− v2(a))

0 = −
d

da
[s1(a)g1(a)]− λ1g1(a) + λ2g2(a)

0 = −
d

da
[s2(a)g2(a)]− λ2g2(a) + λ1g1(a)

1 =

∫ ∞
a

g1(a)da +

∫ ∞
a

g2(a)da

B =

∫ ∞
a

ag1(a)da +

∫ ∞
a

ag2(a)da := S(r)
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Bird’s Eye View of Algorithm for Stationary Equilibria
• Use finite difference method:

http://www.princeton.edu/~moll/HACTproject.htm

• Discretize state space ai , i = 1, ..., I with step size ∆a

v ′j (ai) ≈
vi+1,j − vi ,j
∆a

or vi ,j − vi−1,j
∆a

Denote v =

v1(a1)...
v2(aI)

 , g =
g1(a1)...
g2(aI)

 , dimension = 2I × 1

• End product of FD method: system of sparse matrix equations
ρv = u(v) + A(v; r)v

0 = A(v; r)Tg

B = S(g; r)

which is easy to solve on computer
30

http://www.princeton.edu/~moll/HACTproject.htm


Visualization of A (output of spy(A) in Matlab)
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HJB Equation: Barles-Souganidis
• There is a well-developed theory for numerical solution of HJB
equation using finite difference methods

• Key paper: Barles and Souganidis (1991), “Convergence of
approximation schemes for fully nonlinear second order equations

• Result: finite difference scheme “converges” to unique viscosity
solution under three conditions
1. monotonicity
2. consistency
3. stability

• Good reference: Tourin (2013), “An Introduction to Finite Difference
Methods for PDEs in Finance”

• Background on viscosity soln’s: “Viscosity Solutions for Dummies”
http://www.princeton.edu/~moll/viscosity_slides.pdf

• Accuracy? Two experiments , more in next revision – suggestions? 32
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Transition Dynamics

• Natural generalization of algorithm for stationary equilibrium
• denote vni,j = vi(aj , tn) and stack into vn

• denote gni,j = gi(aj , tn) and stack into gn

• System of sparse matrix equations for transition dynamics:

ρvn = u(vn+1) + A(vn+1; rn)vn +
vn+1 − vn

∆t
,

gn+1 − gn

∆t
= A(vn; rn)Tgn+1,

B = S(gn; rn),

• Terminal condition for v: vN = v∞ (steady state)

• Initial condition for g: g1 = g0.
33



An MIT Shock in the Aiyagari Model

• Production: Yt = Ft(K,L) = AtKαL1−α, dAt = ν(Ā− At)dt
http://www.princeton.edu/~moll/HACTproject/aiyagari_poisson_MITshock.m
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Generalizations and
Other Applications
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A Model with a Continuum of Income Types

• Assume idiosyncratic income follows diffusion process

dyt = µ(yt)dt + σ(yt)dWt

• Reflecting barriers at y and ȳ

• Value function, distribution are now functions of 2 variables:

v(a, y) and g(a, y)

• ⇒ HJB and KF equations are now PDEs in (a, y)-space

36



It doesn’t matter whether you solve ODEs or PDEs
⇒ everything generalizes

http://www.princeton.edu/~moll/HACTproject/huggett_diffusion_partialeq.m

37
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Saving Policy Function and Stationary Distribution
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• Analytic characterization of MPCs: c(a, y) ∼
√
2ν(y)

√
a − a with

ν(y) = (ρ− r)IES(c(y))c(y) +
(
µ(y)−

σ2(y)

2
P(c(y))

)
c ′(y) +

σ2(y)

2
c ′′(y)

where P(c) := −u′′′(c)/u′′(c) = absolute prudence, and c(y) = c(a, y)
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Other Applications – see Paper

• Non-convexities: indivisible housing, mortgages, poverty traps

• Fat-tailed wealth distribution

• Multiple assets with adjustment costs (Kaplan-Moll-Violante)

• Stopping time problems

39



Conclusion

• Very general apparatus: solving het. agent model = solving PDEs

• New theoretical results:
1. analytics: consumption, saving, MPCs of the poor
2. closed-form for wealth distribution with 2 income types
3. unique stationary equilibrium if IES ≥ 1
4. characterization of “soft” borrowing constraints

• Computational algorithm:
• simple, efficient, portable
• codes: http://www.princeton.edu/~moll/HACTproject.htm

• Large number of potential applications – come talk to me!
40
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Appendix
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Derivation of Poisson KF Equation Back

• Work with CDF (in wealth dimension)
Gj(a, t) := Pr(ãt ≤ a, ỹt = yi)

• Income switches from yj to y−j with probability ∆λj
• Over period of length ∆, wealth evolves as ãt+∆ = ãt + ∆sj(ãt)
• Similarly, answer to question “where did ãt+∆ come from?” is

ãt = ãt+∆ − ∆sj(ãt+∆)
• Momentarily ignoring income switches and assuming sj(a) < 0
Pr(ãt+∆ ≤ a) = Pr(ãt ≤ a)︸ ︷︷ ︸

already below a

+Pr(a ≤ ãt ≤ a − ∆sj(a))︸ ︷︷ ︸
cross threshold a

= Pr(ãt ≤ a − ∆sj(a))

• Fraction of people with wealth below a evolves as
Pr(ãt+∆ ≤ a, ỹt+∆ = yj) = (1− ∆λj) Pr(ãt ≤ a − ∆sj(a), ỹt = yj)

+∆λj Pr(ãt ≤ a − ∆s−j(a), ỹt = y−j)
• Intuition: if have wealth < a− ∆sj(a) at t, have wealth < a at t +∆42



Derivation of Poisson KF Equation
• Subtracting Gj(a, t) from both sides and dividing by ∆
Gj(a, t + ∆)− Gj(a, t)

∆
=
Gj(a − ∆si(a), t)− Gj(a, t)

∆

− λjGj(a − ∆sj(a), t) + λ−jG−j(a − ∆s−j(a), t)

• Taking the limit as ∆→ 0
∂tGj(a, t) = −sj(a)∂aGj(a, t)− λjGj(a, t) + λ−jG−j(a, t)

where we have used that

lim
∆→0

Gj(a − ∆sj(a), t)− Gj(a, t)
∆

= lim
x→0

Gj(a − x, t)− Gj(a, t)
x

sj(a)

= −sj(a)∂aGj(a, t)
• Intuition: if sj(a) < 0,Pr(ãt ≤ a, ỹt = yj) increases at rate gj(a, t)
• Differentiate w.r.t. a and use gj(a, t) = ∂aGj(a, t)⇒

∂tgj(a, t) = −∂a[sj(a, t)gj(a, t)]− λjgj(a, t) + λ−jg−j(a, t)
43



Accuracy of Finite Difference Method?

Two experiments:

1. special case: comparison with closed-form solution

2. general case: comparison with numerical solution computed using
very fine grid

44



Accuracy of Finite Difference Method, Experiment 1
• see http://www.princeton.edu/~moll/HACTproject/HJB_accuracy1.m

• Recall: get closed-form solution if
• exponential utility u′(c) = c−θc
• no income risk and r = 0 so that ȧ = y − c (and a ≥ 0)
⇒ s(a) = −

√
2νa, c(a) = y +

√
2νa, ν :=

ρ

θ
• Accuracy with I = 1000 grid points (ĉ(a) = numerical solution)
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Accuracy of Finite Difference Method, Experiment 1
• see http://www.princeton.edu/~moll/HACTproject/HJB_accuracy1.m

• Recall: get closed-form solution if
• exponential utility u′(c) = c−θc
• no income risk and r = 0 so that ȧ = y − c (and a ≥ 0)
⇒ s(a) = −

√
2νa, c(a) = y +

√
2νa, ν :=

ρ

θ
• Accuracy with I = 30 grid points (ĉ(a) = numerical solution)
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Accuracy of Finite Difference Method, Experiment 2
• see http://www.princeton.edu/~moll/HACTproject/HJB_accuracy2.m

• Consider HJB equation with continuum of income types
ρv(a, y) = max

c
u(c)+∂av(a, y)(y+ra−c)+µ(y)∂yv(a, y)+σ

2(y)
2 ∂yyv(a, y)

• Compute twice:
1. with very fine grid: I = 3000 wealth grid points
2. with coarse grid: I = 300 wealth grid points

then examine speed-accuracy tradeoff (accuracy = error in agg C)
Speed (in secs) Aggregate C

I = 3000 0.916 1.1541
I = 300 0.076 1.1606

row 2/row 1 0.0876 1.005629
• i.e. going from I = 3000 to I = 300 yields > 10× speed gain and
0.5% reduction in accuracy (but note: even I = 3000 very fast)

• Other comparisons? Feel free to play around with HJB_accuracy2.m 47
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