Income and Wealth Distribution in Macroeconomics A Continuous-Time Approach

Yves Achdou Université Paris-Diderot Jiequn Han Princeton

Jean-Michel Lasry Université Paris-Dauphine Pierre-Louis Lions Collège de France

Benjamin Moll Princeton

UCL 2 February 2018

Motivation

- Key development over last 30 years: incorporation of explicit heterogeneity into macro models
- Welcome development because:
 - 1. can bring micro data to table to discipline macro theories
 - 2. can talk about welfare implications of shocks, policies
 - 3. aggregate implications often differ from rep agent models
- Despite increasing popularity of heterogeneous agent models:
 - 1. very few theoretical results, almost everything numerical
 - 2. even numerical analyses can be difficult, costly

This Paper: solving het. agent model = solving PDEs

- We recast Aiyagari-Bewley-Huggett model in continuous time
 ⇒ boils down to system of PDEs
- Take advantage of this to make two types of contributions:
- New theoretical results:
 - 1. analytics: consumption, saving, MPCs of the poor
 - 2. closed-form for wealth distribution with 2 income types
 - 3. unique stationary equilibrium if IES ≥ 1 (sufficient condition)
 - 4. characterization of "soft" borrowing constraints (skip today)
- Computational algorithm:
 - simple, efficient (think 0.25 seconds), portable
 - particularly well-suited for problems with non-convexities ...
 - ... and transition dynamics
 - COdes: http://www.princeton.edu/~moll/HACTproject.htm

Solving het. agent model = solving PDEs

- More precisely: a system of two PDEs
 - 1. Hamilton-Jacobi-Bellman equation for individual choices
 - 2. Kolmogorov Forward equation for evolution of distribution
- Many well-developed methods for analyzing and solving these
- Apparatus is very general: applies to any heterogeneous agent model with continuum of atomistic agents
 - 1. heterogeneous households (Aiyagari, Bewley, Huggett,...)
 - 2. heterogeneous producers (Hopenhayn,...)
- can be extended to handle aggregate shocks (Krusell-Smith,...)
 - "When Inequality Matters for Macro and Macro Matters for Inequality" (with Ahn, Kaplan, Winberry & Wolf)

Workhorse Model of Income and Wealth Distribution in Macroeconomics

Workhorse Model of Income and Wealth Distribution

Households are heterogeneous in their wealth a and income y, solve

$$\begin{aligned} \max_{\{c_t\}_{t\geq 0}} \mathbb{E}_0 \int_0^\infty e^{-\rho t} u(c_t) dt & \text{s.t.} \\ \dot{a}_t &= y_t + r a_t - c_t \\ y_t &\in \{y_1, y_2\} \text{ Poisson with intensities } \lambda_1, \lambda_2 \\ a_t &\geq \underline{a} \end{aligned}$$

- c_t: consumption
- u: utility function, u' > 0, u'' < 0
- ρ: discount rate
- r : interest rate
- $\underline{a} \ge -y_1/r$ if r > 0: borrowing limit e.g. if $\underline{a} = 0$, can only save

Later: carries over to y_t = more general processes, e.g. diffusion

Equilibrium (Huggett): bonds in fixed supply, i.e. aggregate a_t = fixed

Typical Consumption and Saving Policy Functions

Typical Stationary Distribution

Equations for Stationary Equilibrium

$$\rho v_j(a) = \max_c \ u(c) + v_j'(a)(y_j + ra - c) + \lambda_j(v_{-j}(a) - v_j(a))$$
 (HJB)

$$0 = -\frac{d}{da}[s_j(a)g_j(a)] - \lambda_j g_j(a) + \lambda_{-j}g_{-j}(a), \tag{KF}$$

 $s_j(a) = y_j + ra - c_j(a) =$ saving policy function from (HJB),

$$\int_{a}^{\infty} (g_1(a) + g_2(a)) da = 1, \quad g_1, g_2 \ge 0$$

$$S(r) := \int_{a}^{\infty} ag_1(a)da + \int_{a}^{\infty} ag_2(a)da = B, \qquad B \ge 0$$
 (EQ)

 The two PDEs (HJB) and (KF) together with (EQ) fully characterize stationary equilibrium
 Derivation of (HJB)
 (KF)

Transition Dynamics

- Needed whenever initial condition ≠ stationary distribution
- Equilibrium still coupled systems of HJB and KF equations...
- ... but now time-dependent: $v_j(a, t)$ and $g_j(a, t)$
- See paper for equations
- Difficulty: the two PDEs run in opposite directions in time
 - HJB looks forward, runs backwards from terminal condition
 - KF looks backward, runs forward from initial condition

Borrowing Constraints?

- Q: where is borrowing constraint $a \ge \underline{a}$ in (HJB)?
- A: "in" boundary condition
- Result: v_i must satisfy

$$v'_j(\underline{a}) \ge u'(y_j + r\underline{a}), \quad j = 1, 2$$
 (BC)

- Derivation:
 - for borrowing constraint not to be violated, need

$$s_j(\underline{a}) = y_j + r\underline{a} - c_j(\underline{a}) \ge 0 \tag{*}$$

the FOC still holds at the borrowing constraint

$$u'(c_i(\underline{a})) = v'_i(\underline{a})$$
 (FOC)

- (*) and (FOC) ⇒ (BC)
- See slides on viscosity solutions for more rigorous discussion
 http://www.princeton.edu/~moll/viscosity_slides.pdf

Plan

- New theoretical results:
 - 1. analytics: consumption, saving, MPCs of the poor
 - 2. closed-form solution to KF equation with 2 income types
 - 3. unique stationary equilibrium if IES ≥ 1 (sufficient condition)
 - 4. "soft" borrowing constraints (skip today)

Note: for 1., 2. and 4. analyze partial equilibrium with $r < \rho$

- Computational algorithm:
 - problems with non-convexities
 - · transition dynamics

Consumption/saving behavior near borrowing constraint depends on:

- 1. tightness of constraint
- 2. properties of u as $c \to 0$

Assumption 1:

The coefficient of absolute risk aversion R(c) := -u''(c)/u'(c) remains finite as $a \to a$

$$-\frac{u''(y_1+r\underline{a})}{u'(y_1+r\underline{a})}<\infty$$

• will show: A1 \Rightarrow borrowing constraint "matters" (in fact, it's an \Leftrightarrow)

How to read A1?

- "standard" utility functions, e.g. CRRA, satisfy $-\frac{u''(0)}{u'(0)} = \infty$
- hence for standard utility functions A1 equivalent to $\underline{a} > -y_1/r$, i.e. constraint matters if it is tighter than "natural borrowing constraint"
- but weaker: e.g. if $u'(c) = e^{-\theta c}$, constraint matters even if $\underline{a} = -\frac{y_1}{r_1}$

Rough version of Proposition: under A1 policy functions look like this

Proposition: Assume $r < \rho$, $y_1 < y_2$ and that A1 holds.

Then saving and consumption policy functions close to $a = \underline{a}$ satisfy

$$s_1(a) \sim -\sqrt{2\nu_1}\sqrt{a-\underline{a}}$$

$$c_1(a) \sim y_1 + ra + \sqrt{2\nu_1}\sqrt{a-\underline{a}}$$

$$c_1'(a) \sim r + \frac{1}{2}\sqrt{\frac{\nu_1}{2(a-\underline{a})}}$$

where $\nu_1 = \text{constant}$ that depends on r, ρ , λ_1 , λ_2 etc – see next slide

Note: " $f(a) \sim g(a)$ " means $\lim_{a \to \underline{a}} f(a)/g(a) = 1$, "f behaves like g close to \underline{a} "

Corollary: The wealth of worker who keeps y_1 converges to borrowing constraint in finite time at speed governed by ν_1 :

$$a(t)-\underline{a}\sim rac{
u_1}{2}\left(T-t
ight)^2$$
, $T:=$ "hitting time" $=\sqrt{rac{2(a_0-\underline{a})}{
u_1}}$, $0\leq t\leq T$

Proof: integrate
$$\dot{a}(t) = -\sqrt{2\nu_1}\sqrt{a(t)-\underline{a}}$$

speed =
$$\nu_1 = \frac{(\rho - r)u'(\underline{c}_1) + \lambda_1(u'(\underline{c}_1) - u'(\underline{c}_2))}{-u''(\underline{c}_1)}$$

 $\approx (\rho - r)IES(c_1)c_1 + \lambda_1(c_2 - c_1)$

Paper: Two special cases with closed-form solutions

• CARA: A1 holds, hit constraint $a(t) = \frac{\nu}{2}(T-t)^2$, $\nu := \frac{\rho-r}{\theta}$

• CRRA & $\underline{a} = -\frac{y}{r}$: A1 violated, approach constraint asymptotically

Marginal Propensities to Consume and Save

- So far: have characterized $c'_i(a) \neq MPC$ over discrete time interval
- **Definition:** The MPC over a time period τ is given by

$$\mathsf{MPC}_{j,\tau}(a) = C'_{j,\tau}(a), \quad \mathsf{where}$$

$$C_{j,\tau}(a) = \mathbb{E}\left[\int_0^\tau c_j(a_t)dt|a_0 = a, y_0 = y_j\right]$$

• **Lemma:** If τ sufficiently small so that no income switches, then

$$MPC_{1,\tau}(a) \sim \min\{\tau c_1'(a), 1 + \tau r\}$$

Note: MPC_{1, τ}(a) bounded above even though $c_1'(a) \to \infty$ as $a \downarrow \underline{a}$

- If new income draws before τ , no more analytic solution
- But straightforward computation using Feynman-Kac formula

Using the Formula for ν_1 to Better Understand MPCs

• Consider dependence of low-income type's MPC_{1, τ}(a) on y_1

• Why hump-shaped?!? Answer: MPC_{1,T}(a) proportional to

$$c_1'(a) \sim r + \frac{1}{2} \sqrt{\frac{\nu_1}{2(a-\underline{a})}}, \quad \nu_1 \approx (\rho - r) \frac{1}{\gamma} \underline{c_1} + \lambda_1 (\underline{c_2} - \underline{c_1})$$
 and note that $\underline{c_1} = v_1 + ra$

• Can see: increase in y_1 has two offsetting effects

Result 2: Closed-Form Solution to KF Equation

Recall equation for stationary distribution

$$0 = -\frac{d}{da}[s_j(a)g_j(a)] - \lambda_j g_j(a) + \lambda_{-j}g_{-j}(a)$$
 (KF)

• Lemma: the solution to (KF) is

$$g_j(a) = \frac{\kappa_j}{s_j(a)} \exp\left(-\int_{\underline{a}}^a \left(\frac{\lambda_1}{s_1(x)} + \frac{\lambda_2}{s_2(x)} dx\right)\right)$$

with κ_1 , κ_2 pinned down by g_i 's integrating to one

- Features of wealth distribution:
 - Dirac point mass of type y_1 individuals at constraint $G_1(\underline{a}) > 0$
 - thin right tail: $g(a) \sim \xi(a_{\text{max}} a)^{\lambda_2/\zeta_2 1}$, i.e. not Pareto
 - see paper for more
- Later in paper: extension with Pareto tail (Benhabib-Bisin-Zhu)

Result 2: Closed-Form Solution to KF Equation

General Equilibrium: Existence and Uniqueness

Increase in r from r_L to $r_H > r_L$

Stationary Equilibrium

Asset Supply
$$S(r) = \int_a^\infty ag_1(a;r)da + \int_a^\infty ag_2(a;r)da$$

Proposition: a stationary equilibrium exists

Result 3: Uniqueness of Stationary Equilibrium

Proposition: Assume that the IES is weakly greater than one

$$\mathsf{IES}(c) := -\frac{u'(c)}{u''(c)c} \ge 1 \quad \text{for all } c \ge 0,$$

and that there is no borrowing $a \ge 0$. Then:

- 1. Individual consumption $c_j(a; r)$ is strictly decreasing in r
- 2. Individual saving $s_j(a; r)$ is strictly increasing in r
- 3. $r \uparrow \Rightarrow \text{CDF } G_j(a; r)$ shifts right in FOSD sense
- 4. Aggregate saving S(r) is strictly increasing \Rightarrow uniqueness

Note: holds for any labor income process, not just two-state Poisson

Uniqueness: Proof Sketch

- Parts 2 to 4 direct consequences of part 1 $(c_j(a; r))$ decreasing in r)
- ⇒ focus on part 1: builds on nice result by Olivi (2017) who decomposes ∂c_i/∂r into income and substitution effects
- **Lemma** (Olivi, 2017): *c* response to change in *r* is

$$\frac{\partial c_j(a)}{\partial r} = \underbrace{\frac{1}{u''(c_0)}}_{\text{Substitution effect}<0} \underbrace{\mathbb{E}_0 \int_0^T e^{-\int_0^t \xi_s ds} u''(c_t) dt}_{\text{Income effect}>0} + \underbrace{\frac{1}{u''(c_0)}}_{\text{Income effect}>0} \underbrace{\mathbb{E}_0 \int_0^T e^{-\int_0^t \xi_s ds} u''(c_t) a_t \partial_a c_t dt}_{\text{Income effect}>0}$$

where $\xi_t := \rho - r + \partial_a c_t$ and $T := \inf\{t \ge 0 | a_t = 0\} = \text{time at which hit } 0$

• We show: $IES(c) := -\frac{u'(c)}{u''(c)c} \ge 1 \Rightarrow$ substitution effect dominates $\Rightarrow \partial c_j(a)/\partial r < 0$, i.e. consumption decreasing in r

Computations for Heterogeneous Agent Model

Computational Advantages relative to Discrete Time

- 1. Borrowing constraints only show up in boundary conditions
 - FOCs always hold with "="
- 2. "Tomorrow is today"
 - FOCs are "static", compute by hand: $c^{-\gamma} = v_i'(a)$
- 3. Sparsity
 - solving Bellman, distribution = inverting matrix
 - but matrices very sparse ("tridiagonal")
 - reason: continuous time ⇒ one step left or one step right
- 4. Two birds with one stone
 - tight link between solving (HJB) and (KF) for distribution
 - matrix in discrete (KF) is transpose of matrix in discrete (HJB)
 - reason: diff. operator in (KF) is adjoint of operator in (HJB)

Computations for Heterogeneous Agent Model

- Hard part: HJB equation
- Easy part: KF equation. Once you solved HJB equation, get KF equation "for free"
- System to be solved

$$\rho v_{1}(a) = \max_{c} u(c) + v'_{1}(a)(y_{1} + ra - c) + \lambda_{1}(v_{2}(a) - v_{1}(a))$$

$$\rho v_{2}(a) = \max_{c} u(c) + v'_{2}(a)(y_{2} + ra - c) + \lambda_{2}(v_{1}(a) - v_{2}(a))$$

$$0 = -\frac{d}{da}[s_{1}(a)g_{1}(a)] - \lambda_{1}g_{1}(a) + \lambda_{2}g_{2}(a)$$

$$0 = -\frac{d}{da}[s_{2}(a)g_{2}(a)] - \lambda_{2}g_{2}(a) + \lambda_{1}g_{1}(a)$$

$$1 = \int_{\underline{a}}^{\infty} g_{1}(a)da + \int_{\underline{a}}^{\infty} g_{2}(a)da$$

$$B = \int_{\underline{a}}^{\infty} ag_{1}(a)da + \int_{\underline{a}}^{\infty} ag_{2}(a)da := S(r)$$

Bird's Eye View of Algorithm for Stationary Equilibria

- Use finite difference method:
 - http://www.princeton.edu/~moll/HACTproject.htm
- Discretize state space a_i , i = 1, ..., I with step size Δa

$$v_j'(a_i) \approx \frac{v_{i+1,j} - v_{i,j}}{\Delta a} \quad \text{or} \quad \frac{v_{i,j} - v_{i-1,j}}{\Delta a}$$
Denote $\mathbf{v} = \begin{bmatrix} v_1(a_1) \\ \vdots \\ v_2(a_l) \end{bmatrix}$, $\mathbf{g} = \begin{bmatrix} g_1(a_1) \\ \vdots \\ g_2(a_l) \end{bmatrix}$, dimension $= 2I \times 1$

End product of FD method: system of sparse matrix equations

$$\rho \mathbf{v} = \mathbf{u}(\mathbf{v}) + \mathbf{A}(\mathbf{v}; r)\mathbf{v}$$
$$\mathbf{0} = \mathbf{A}(\mathbf{v}; r)^{\mathsf{T}}\mathbf{g}$$
$$B = S(\mathbf{g}; r)$$

which is easy to solve on computer

Visualization of **A** (output of spy(A) in Matlab)

HJB Equation: Barles-Souganidis

- There is a well-developed theory for numerical solution of HJB equation using finite difference methods
- Key paper: Barles and Souganidis (1991), "Convergence of approximation schemes for fully nonlinear second order equations
- Result: finite difference scheme "converges" to unique viscosity solution under three conditions
 - 1. monotonicity
 - 2. consistency
 - 3. stability
- Good reference: Tourin (2013), "An Introduction to Finite Difference Methods for PDEs in Finance"
- Background on viscosity soln's: "Viscosity Solutions for Dummies" http://www.princeton.edu/~moll/viscosity_slides.pdf

Transition Dynamics

- Natural generalization of algorithm for stationary equilibrium
 - denote $v_{i,j}^n = v_i(a_j, t^n)$ and stack into \mathbf{v}^n
 - denote $g_{i,j}^n = g_i(a_j, t^n)$ and stack into \mathbf{g}^n
- System of sparse matrix equations for transition dynamics:

$$\rho \mathbf{v}^{n} = \mathbf{u}(\mathbf{v}^{n+1}) + \mathbf{A}(\mathbf{v}^{n+1}; r^{n})\mathbf{v}^{n} + \frac{\mathbf{v}^{n+1} - \mathbf{v}^{n}}{\Delta t},$$
$$\frac{\mathbf{g}^{n+1} - \mathbf{g}^{n}}{\Delta t} = \mathbf{A}(\mathbf{v}^{n}; r^{n})^{\mathsf{T}}\mathbf{g}^{n+1},$$
$$B = S(\mathbf{g}^{n}; r^{n}),$$

- Terminal condition for \mathbf{v} : $\mathbf{v}^N = \mathbf{v}_{\infty}$ (steady state)
- Initial condition for \mathbf{g} : $\mathbf{g}^1 = \mathbf{g}_0$.

An MIT Shock in the Aiyagari Model

• Production: $Y_t = F_t(K, L) = A_t K^{\alpha} L^{1-\alpha}$, $dA_t = \nu(\bar{A} - A_t) dt$ http://www.princeton.edu/~moll/HACTproject/aiyagari_poisson_MITshock.m

Generalizations and Other Applications

A Model with a Continuum of Income Types

Assume idiosyncratic income follows diffusion process

$$dy_t = \mu(y_t)dt + \sigma(y_t)dW_t$$

- Reflecting barriers at \underline{y} and \bar{y}
- Value function, distribution are now functions of 2 variables:

$$v(a, y)$$
 and $g(a, y)$

• \Rightarrow HJB and KF equations are now PDEs in (a, y)-space

It doesn't matter whether you solve ODEs or PDEs ⇒ everything generalizes

http://www.princeton.edu/~moll/HACTproject/huggett_diffusion_partialeq.m

Saving Policy Function and Stationary Distribution

• Analytic characterization of MPCs: $c(a, y) \sim \sqrt{2\nu(y)}\sqrt{a-\underline{a}}$ with

$$\begin{split} \nu(y) &= (\rho - r) \mathsf{IES}(\underline{c}(y)) \underline{c}(y) + \left(\mu(y) - \frac{\sigma^2(y)}{2} \mathcal{P}(\underline{c}(y))\right) \underline{c}'(y) + \frac{\sigma^2(y)}{2} \underline{c}''(y) \\ \text{where } \mathcal{P}(c) &:= -u'''(c)/u''(c) = \mathsf{absolute prudence, and } \underline{c}(y) = c(\underline{a}, y) \end{split}$$

Other Applications – see Paper

- Non-convexities: indivisible housing, mortgages, poverty traps
- Fat-tailed wealth distribution
- Multiple assets with adjustment costs (Kaplan-Moll-Violante)
- Stopping time problems

Conclusion

- Very general apparatus: solving het. agent model = solving PDEs
- New theoretical results:
 - 1. analytics: consumption, saving, MPCs of the poor
 - 2. closed-form for wealth distribution with 2 income types
 - 3. unique stationary equilibrium if IES ≥ 1
 - 4. characterization of "soft" borrowing constraints
- · Computational algorithm:
 - simple, efficient, portable
 - COdes: http://www.princeton.edu/~moll/HACTproject.htm
- Large number of potential applications come talk to me!

Appendix

Derivation of Poisson KF Equation • Back

Work with CDF (in wealth dimension)

$$G_i(a, t) := \Pr(\tilde{a}_t < a, \tilde{y}_t = y_i)$$

- Income switches from y_j to y_{-j} with probability $\Delta \lambda_j$
- Over period of length Δ , wealth evolves as $\tilde{a}_{t+\Delta} = \tilde{a}_t + \Delta s_j(\tilde{a}_t)$
- Similarly, answer to question "where did $\tilde{a}_{t+\Delta}$ come from?" is

$$\tilde{a}_t = \tilde{a}_{t+\Delta} - \Delta s_j(\tilde{a}_{t+\Delta})$$

• Momentarily ignoring income switches and assuming $s_j(a) < 0$

$$\Pr(\tilde{a}_{t+\Delta} \leq a) = \underbrace{\Pr(\tilde{a}_t \leq a)}_{\text{already below } a} + \underbrace{\Pr(a \leq \tilde{a}_t \leq a - \Delta s_j(a))}_{\text{cross threshold } a} = \Pr(\tilde{a}_t \leq a - \Delta s_j(a))$$

• Fraction of people with wealth below a evolves as

$$\Pr(\tilde{a}_{t+\Delta} \leq a, \tilde{y}_{t+\Delta} = y_j) = (1 - \Delta \lambda_j) \Pr(\tilde{a}_t \leq a - \Delta s_j(a), \tilde{y}_t = y_j) + \Delta \lambda_j \Pr(\tilde{a}_t \leq a - \Delta s_{-j}(a), \tilde{y}_t = y_{-j})$$

• Intuition: if have wealth $< a - \Delta s_i(a)$ at t, have wealth < a at $t + \Delta 42$

Derivation of Poisson KF Equation

• Subtracting $G_i(a, t)$ from both sides and dividing by Δ

$$\frac{G_j(a, t + \Delta) - G_j(a, t)}{\Delta} = \frac{G_j(a - \Delta s_i(a), t) - G_j(a, t)}{\Delta} - \lambda_j G_j(a - \Delta s_j(a), t) + \lambda_{-j} G_{-j}(a - \Delta s_{-j}(a), t)$$

• Taking the limit as $\Delta \to 0$

$$\partial_t G_j(a,t) = -s_j(a)\partial_a G_j(a,t) - \lambda_j G_j(a,t) + \lambda_{-j} G_{-j}(a,t)$$

where we have used that

$$\lim_{\Delta \to 0} \frac{G_j(a - \Delta s_j(a), t) - G_j(a, t)}{\Delta} = \lim_{x \to 0} \frac{G_j(a - x, t) - G_j(a, t)}{x} s_j(a)$$
$$= -s_j(a) \partial_a G_j(a, t)$$

- Intuition: if $s_j(a) < 0$, $\Pr(\tilde{a}_t \le a, \tilde{y}_t = y_j)$ increases at rate $g_j(a, t)$
- Differentiate w.r.t. a and use $g_j(a,t) = \partial_a G_j(a,t) \Rightarrow$ $\partial_t g_j(a,t) = -\partial_a [s_j(a,t)g_j(a,t)] - \lambda_j g_j(a,t) + \lambda_{-j} g_{-j}(a,t)$

Accuracy of Finite Difference Method?

Two experiments:

- 1. special case: comparison with closed-form solution
- 2. general case: comparison with numerical solution computed using very fine grid

Accuracy of Finite Difference Method, Experiment 1

- See http://www.princeton.edu/~moll/HACTproject/HJB_accuracy1.m
- Recall: get closed-form solution if
 - exponential utility $u'(c) = c^{-\theta c}$
 - no income risk and r = 0 so that $\dot{a} = y c$ (and $a \ge 0$)

$$\Rightarrow$$
 $s(a) = -\sqrt{2\nu a},$ $c(a) = y + \sqrt{2\nu a},$ $\nu := \frac{\rho}{\rho}$

• Accuracy with I = 1000 grid points ($\hat{c}(a) =$ numerical solution)

Accuracy of Finite Difference Method, Experiment 1

- See http://www.princeton.edu/~moll/HACTproject/HJB_accuracy1.m
- · Recall: get closed-form solution if
 - exponential utility $u'(c) = c^{-\theta c}$
 - no income risk and r=0 so that $\dot{a}=y-c$ (and $a\geq 0$) $\Rightarrow s(a)=-\sqrt{2\nu a}, \qquad c(a)=y+\sqrt{2\nu a}, \qquad \nu:=\frac{\rho}{a}$
- Accuracy with I = 30 grid points ($\hat{c}(a) =$ numerical solution)

Accuracy of Finite Difference Method, Experiment 2

- SOO http://www.princeton.edu/~moll/HACTproject/HJB_accuracy2.m
- Consider HJB equation with continuum of income types $\rho v(a,y) = \max_{x} u(x) + \partial_a v(x,y)(y+ra-x) + \mu(y)\partial_y v(x,y) + \frac{\sigma^2(y)}{2}\partial_{yy}v(x,y)$
- Compute twice:
 - 1. with very fine grid: I = 3000 wealth grid points
 - 2. with coarse grid: I = 300 wealth grid points

then examine speed-accuracy tradeoff (accuracy = error in agg C)

	Speed (in secs)	Aggregate C
<i>I</i> = 3000	0.916	1.1541
I = 300	0.076	1.1606
row 2/row 1	0.0876	1.005629

- i.e. going from I = 3000 to I = 300 yields $> 10 \times$ speed gain and 0.5% reduction in accuracy (but note: even I = 3000 very fast)
- Other comparisons? Feel free to play around with HJB_accuracy2.m