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Motivation

¢ Key development over last 30 years: incorporation of explicit
heterogeneity into macro models

¢ Welcome development because:

1. can bring micro data to table to discipline macro theories
2. can talk about welfare implications of shocks, policies

3. aggregate implications often differ from rep agent models

¢ Despite increasing popularity of heterogeneous agent models:

1. very few theoretical results, almost everything numerical

2. even numerical analyses can be difficult, costly



This Paper: solving het. agent model = solving PDEs

¢ \We recast Aiyagari-Bewley-Huggett model in continuous time
= boils down to system of PDEs

¢ Take advantage of this to make two types of contributions:

* New theoretical results:
1. analytics: consumption, saving, MPCs of the poor
2. closed-form for wealth distribution with 2 income types
3. unique stationary equilibrium if IES > 1 (sufficient condition)
4. characterization of “soft” borrowing constraints (skip today)

e Computational algorithm:
 simple, efficient (think 0.25 seconds), portable

* particularly well-suited for problems with non-convexities ...
e ... and transition dynamics

e Ccodes: http://www.princeton.edu/~moll/HACTproject.htm


http://www.princeton.edu/~moll/HACTproject.htm

Solving het. agent model = solving PDEs

* More precisely: a system of two PDEs
1. Hamilton-dacobi-Bellman equation for individual choices

2. Kolmogorov Forward equation for evolution of distribution
* Many well-developed methods for analyzing and solving these
e Apparatus is very general: applies to any heterogeneous agent
model with continuum of atomistic agents
1. heterogeneous households (Aiyagari, Bewley, Huggett,...)
2. heterogeneous producers (Hopenhayn,...)

* can be extended to handle aggregate shocks (Krusell-Smith,...)

¢ “When Inequality Matters for Macro and Macro Matters for
Inequality” (with Ahn, Kaplan, Winberry & Wolf)



Workhorse Model of Income and Wealth
Distribution in Macroeconomics



Workhorse Model of Income and Wealth Distribution

Households are heterogeneous in their wealth a and income y, solve
max Eg /OO e Ptu(c)dt st
{ct}ezo 0
ar =yt +rar— ¢t
vt € {y1, y»} Poisson with intensities A1, A\»
ar=>a
* c;: consumption
u: utility function, v/ >0, v” <0
e p: discount rate
* r:interest rate
* a> —y/rifr > 0: borrowing limit e.g. if a = 0, can only save

Later: carries over to y; = more general processes, €.g. diffusion

Equilibrium (Huggett): bonds in fixed supply, i.e. aggregate a; = fixed



Typical Consumption and Saving Policy Functions
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Typical Stationary Distribution

Densities, gj(a)




Equations for Stationary Equilibrium

pvi(a) = max u(c) +vj(a)(y; +ra—c) + X(v-j(a) —v(a)  (HJIB)

0= _%[%(a)gj(a)] = Ngj(a) +A_jg-(a), (KF)

si(a) = y; + ra — ¢j(a) = saving policy function from (HJB),

/Oo<gl<a> L g(@)da=1, .92 0

S(r) = /Oo agi(a)da+ /OO ag>(a)da= B, B>0 (EQ)

* The two PDEs (HJB) and (KF) together with (EQ) fully characterize
stationary equilibrium



Transition Dynamics

Needed whenever initial condition # stationary distribution

Equilibrium still coupled systems of HJB and KF equations...

... but now time-dependent: v;(a, t) and g;(a, t)

See paper for equations

Difficulty: the two PDEs run in opposite directions in time

* HJB looks forward, runs backwards from terminal condition

* KF looks backward, runs forward from initial condition



Borrowing Constraints?

* Q: where is borrowing constraint a > a in (HJB)?
* A: “in” boundary condition

Result: v; must satisfy
vi(a) = u'(yj+ra), Jj=1.2 (BC)

Derivation:

* for borrowing constraint not to be violated, need

si(a) =yj+ra—¢(a)=0 (+)
 the FOC still holds at the borrowing constraint
u'(ci(a)) = vj(a) (FOC)

* (¥) and (FOC) = (BC)

See slides on viscosity solutions for more rigorous discussion
http://www.princeton.edu/~moll/viscosity_slides.pdf


http://www.princeton.edu/~moll/viscosity_slides.pdf

Plan

¢ New theoretical results:

1. analytics: consumption, saving, MPCs of the poor
2. closed-form solution to KF equation with 2 income types
3. unique stationary equilibrium if IES > 1 (sufficient condition)
4. “soft” borrowing constraints (skip today)
Note: for 1., 2. and 4. analyze partial equilibrium with r < p
e Computational algorithm:
¢ problems with non-convexities

e transition dynamics



Result 1: Consumption, Saving Behavior of the Poor

Consumption/saving behavior near borrowing constraint depends on:
1. tightness of constraint
2. propertiesof uas c — 0

Assumption 1:

The coefficient of absolute risk aversion R(c) := —u"(c)/u'(c) remains

finite as a — a
u"(y1 + ra)

u'(y1 + ra)

¢ will show: A1 = borrowing constraint “matters” (in fact, it's an <)
How to read A17?

e “standard” utility functions, e.g. CRRA, satisfy — Z//I((g)) =00

* hence for standard utility functions A1 equivalentto a > —y; /r, i.e.
constraint matters if it is tighter than “natural borrowing constraint”

* butweaker: e.g. if u’(c) = e%, constraint matters even if a = —%



Result 1: Consumption, Saving Behavior of the Poor

Rough version of Proposition: under A1 policy functions look like this
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Result 1: Consumption, Saving Behavior of the Poor

Proposition: Assume r < p, y1 < y» and that A1 holds.
Then saving and consumption policy functions close to a = a satisfy

si(a) ~ —/2v1\/a— a
ca(a) ~y1+ra+/2vi\/a—a

1 V1
c(a)~r+3 20a-2)

where v, = constant that depends on r, p, A1, A> etc — see next slide

Note: “f(a) ~ g(a)” means lim,-, f(a)/g(a) = 1, “f behaves like g close to 2"



Result 1: Consumption, Saving Behavior of the Poor

Corollary: The wealth of worker who keeps y; converges to borrowing
constraint in finite time at speed governed by vy:

a(t) —an~ ﬂ (T -, T:="hitingtime” = /222 g<t<T
Proof: mtegrate a(t) = —v2uvi/a(t) — a

(a) Consumption 0 (b) Savlnas (c) Wealth
2 : E
E =
O
Yyb=== === A Op-----=
Time, ¢ Time, ¢ Time, ¢
speed = v, = (o —nd'(c) + M(V(a) — ()
1 —u"(c1)

~ (p—r)IES(c1)ct + Ai(e — c1)



Paper: Two special cases with closed-form solutions

» CARA: A1 holds, hit constraint a(t) = 5(T — t)?, v = 25"
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Marginal Propensities to Consume and Save

So far: have characterized c/(a) # MPC over discrete time interval

Definition: The MPC over a time period T is given by
MPC;(a) = Cj.(a), where

.
Cir(a)=E [/ ci(ar)dtlag = a,yo =Y
0

Lemma: If 7 sufficiently small so that no income switches, then
MPC; r(a) ~ min{7cj(a), 1+ 7r}

Note: MPC; ,(a) bounded above even though c¢j(a) -+ ccasal a

If new income draws before T, no more analytic solution

But straightforward computation using Feynman-Kac formula



Using the Formula for v; to Better Understand MPCs

* Consider dependence of low-income type’s MPC; (a) on y;
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e Why hump-shaped?!? Answer: MPC; ,(a) proportional to
1 %1 1
/ -/ 1 ~ o B
c(a)~r+ 2\ 2G—a) “ (p f),ygl + (e —a)
and note that ¢y = y; + ra

e Can see: increase in y; has two offsetting effects



Result 2: Closed-Form Solution to KF Equation

¢ Recall equation for stationary distribution

d
0= _E[Sj(a)gj(a)] —Ngj(a) + Ajg9-j(a)

¢ Lemma: the solution to (KF) is

Kj a A A2
gj(a) = Sj(a) exp <_/a <51(X) + 52(X)dx>>

with k1, k> pinned down by g;’s integrating to one

e Features of wealth distribution:

* Dirac point mass of type y; individuals at constraint G1(a) > 0

« thin right tail: g(a) ~ &(amax — a)**/¢>71, i.e. not Pareto

* see paper for more

e | ater in paper: extension with Pareto tail (Benhabib-Bisin-Zhu)



Result 2: Closed-Form Solution to KF Equation

—ai(a)
--=-g2(a)

Densities, gj(a)
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General Equilibrium: Existence and Unigqueness
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Stationary Equilibrium

oo

Asset Supply S(r):/ agi(a; r)da+/ ag»(a; r)da

¢ Proposition: a stationary equilibrium exists



Result 3: Uniqueness of Stationary Equilibrium

Proposition: Assume that the |ES is weakly greater than one

/
IES(c) = — U‘f,(((f))c >1 forallc>0,

and that there is no borrowing a > 0. Then:
1. Individual consumption ¢;(a; r) is strictly decreasing in r
2. Individual saving s;(a; r) is strictly increasing in r
3. r = CDF Gj(a; r) shifts right in FOSD sense
4. Aggregate saving S(r) is strictly increasing = uniqueness

Note: holds for any labor income process, not just two-state Poisson



Uniqueness: Proof Sketch

* Parts 2 to 4 direct consequences of part 1 (c;(a; r) decreasing in r)

e = focus on part 1: builds on nice result by Olivi (2017) who
decomposes Oc¢;/0r into income and substitution effects

e Lemma (Olivi, 2017): ¢ response to change in r is

d¢;(a) 1 /T ot 1
= — Jo &sds —E
o = weye ), € TV edty B

substitution effect<0 income effect>0

where £ .= p—r+ 0,¢; and T := inf{t > 0la; = 0} = time at which hit 0

-
t
/e*fossdsu”(ct)atﬁactdt
0

* We show: IES(c) := —% > 1 = substitution effect dominates

= 0cj(a)/0r < 0, i.e. consumption decreasing in r



Computations for
Heterogeneous Agent Model



Computational Advantages relative to Discrete Time

1. Borrowing constraints only show up in boundary conditions
¢ FOCs always hold with “="

2. “Tomorrow is today”
* FOCs are “static”, compute by hand: ¢~ = v/(a)

3. Sparsity
* solving Bellman, distribution = inverting matrix
e but matrices very sparse (“tridiagonal”)
e reason: continuous time = one step left or one step right

4. Two birds with one stone
* tight link between solving (HJB) and (KF) for distribution
e matrix in discrete (KF) is transpose of matrix in discrete (HJB)
e reason: diff. operator in (KF) is adjoint of operator in (HJB)



Computations for Heterogeneous Agent Model

e Hard part: HJB equation

e Easy part: KF equation. Once you solved HJB equation, get KF
equation “for free”

e System to be solved
pvi(a) = max u(c) +vi(a)(y1 + ra—c) + M(va(a) — vi(a))
pva(a) = max u(c) + va(a)(y2 + ra—c) + Xa(vi(a) — va(a))
0=~ 51(2)91(a)] - 2161(3) + X202(2)

0= _%[52(3)92(53)] —X29g2(a) + Mgi(a)
1= /oo gi(a)da + /oo g2(a)da

B:/OO agl(a)daJr/OO aga(a)da := S(r)



Bird’s Eye View of Algorithm for Stationary Equilibria

* Use finite difference method:
http://www.princeton.edu/~moll/HACTproject.htm

¢ Discretize state space a;, i = 1, ..., | with step size Aa
/ Vitl,) — Vij Vij = Vi-1,
vi(ar) Aa Aa
vi(ar) g1(a1)
Denote v = : ., g= : , dimension =2/ x 1
va(ar) g2(ay)

¢ End product of FD method: system of sparse matrix equations
ov =u(v) + A(v; r)v
0=A(v;r)'g
B =5(g;r)
which is easy to solve on computer


http://www.princeton.edu/~moll/HACTproject.htm

Visualization of A (output of spy (4) in Matlab)
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spy(A)

HJB Equation: Barles-Souganidis

There is a well-developed theory for numerical solution of HJB
equation using finite difference methods

Key paper: Barles and Souganidis (1991), “Convergence of
approximation schemes for fully nonlinear second order equations

Result: finite difference scheme “converges” to unique viscosity
solution under three conditions

1. monotonicity
2. consistency
3. stability

Good reference: Tourin (2013), “An Introduction to Finite Difference
Methods for PDEs in Finance”

Background on viscosity soln’s: “Viscosity Solutions for Dummies”

http://www.princeton.edu/~moll/viscosity_slides.pdf

Accuracy? , more in next revision — suggestions?


http://www.princeton.edu/~moll/viscosity_slides.pdf

Transition Dynamics

Natural generalization of algorithm for stationary equilibrium
* denote v/; = v;(a;, t") and stack into v"

* denote g, = gi(aj, t") and stack into g”

e System of sparse matrix equations for transition dynamics:
vn+1 — "

pv” = u(v") + AN M+ N

gn+1 _ gn

— n. .m\T_ n+1
AT AN ") g™,

B =35(g"r"),

Terminal condition for v: vV = v, (steady state)

Initial condition for g: g* = go.



An MIT Shock in the Aiyagari Model

* Production: Y; = Fi(K, L) = AiK*L1™® dA; = v(A — Ap)dt

http://www.princeton.edu/~moll/HACTproject/aiyagari_poisson_MITshock.m
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http://www.princeton.edu/~moll/HACTproject/aiyagari_poisson_MITshock.m

Generalizations and
Other Applications



A Model with a Continuum of Income Types

¢ Assume idiosyncratic income follows diffusion process

dy: = u(yr)dt + o(ye)dW;

Reflecting barriers at y and y

Value function, distribution are now functions of 2 variables:

v(a,y) and g(a,y)

= HJB and KF equations are now PDEs in (a, y)-space



It doesn’t matter whether you solve ODEs or PDEs
= everything generalizes

http://www.princeton.edu/~moll/HACTproject/huggett_diffusion_partialeq.m


http://www.princeton.edu/~moll/HACTproject/huggett_diffusion_partialeq.m

Saving Policy Function and Stationary Distribution
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* Analytic characterization of MPCs: c(a, y) ~ v/2v(y)v/a — a with

2 2
1) = (p = ESEE) + () - TP ) )+ Ze)

where P(c) := —u"(c)/u"(c) = absolute prudence, and c(y) = c(a,y)



Other Applications — see Paper

* Non-convexities: indivisible housing, mortgages, poverty traps

Fat-tailed wealth distribution

Multiple assets with adjustment costs (Kaplan-Moll-Violante)

Stopping time problems



Conclusion

e Very general apparatus: solving het. agent model = solving PDEs

New theoretical results:
analytics: consumption, saving, MPCs of the poor
closed-form for wealth distribution with 2 income types

unique stationary equilibrium if IES > 1

A 0o~

characterization of “soft” borrowing constraints

Computational algorithm:
e simple, efficient, portable

e Ccodes: http://www.princeton.edu/~moll/HACTproject.htm

Large number of potential applications — come talk to me!


http://www.princeton.edu/~moll/HACTproject.htm

Appendix



Derivation of Poisson KF Equation

e Work with CDF (in wealth dimension)
Gj(a t) :==Pr(a < a i = yi)
* Income switches from y; to y_; with probability A);
* Over period of length A, wealth evolves as &;4a = ar + Asj(4;)
e Similarly, answer to question “where did 3, o come from?” is
ar = aryn — Asj(arin)
* Momentarily ignoring income switches and assuming s;(a) < 0

Pr(depa < a) = Pr(d: < a)+Pr(a<a <a-—Asj(a)) =Pr(a < a—Asi(a))

already below a cross threshold a
* Fraction of people with wealth below a evolves as
Pr(desa < a, Veva =y;) = (1 = AXj) Pr(a: < a— Asj(a), e = y))
+AN; Pr(a: <a—As_j(a), Jr = y—j)

* Intuition: if have wealth < a — As;(a) at t, have wealth < aat t + A



Derivation of Poisson KF Equation

* Subtracting G(a, t) from both sides and dividing by A
Gj(a,t+A)—Gj(a, t) Gjla—Asi(a) t) —Gj(a 1)
A o A
— \Gi(a— Asi(a), 1) + AL;G_j(a— As_(a). )

¢ Taking the limitas A — 0
0:Gj(a, t) = —sj(a)0,Gj(a, t) — N\jGj(a, t) + A_;G_j(a, t)
where we have used that
- Gj(a—x,t) — Gj(a, t)sj

G- b5(2). ) = Gia.t)
[im =1
A—0 A x—0 X
— —5(2)2:Gy(a. 1)

* Intuition: if s;(a) < 0, Pr(a: < a, ¥+ = y;) increases at rate g;(a, t)

(a)

* Differentiate w.r.t. a and use gj(a, t) = 0,Gj(a, t) =
Oegj(a t) = —0Balsj(a, t)gj(a t)] — Ajgj(a t) + A—jg-j(a, t)



Accuracy of Finite Difference Method?

Two experiments:
1. special case: comparison with closed-form solution

2. general case: comparison with numerical solution computed using
very fine grid



Accuracy of Finite Difference Method, Experiment 1

Consumption

® S€e€ http://www.princeton.edu/~moll/HACTproject/HJB_accuracyl.m
* Recall: get closed-form solution if
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http://www.princeton.edu/~moll/HACTproject/HJB_accuracy1.m

Accuracy of Finite Difference Method, Experiment 1

Consumption

® S€e€ http://www.princeton.edu/~moll/HACTproject/HJB_accuracyl.m

* Recall: get closed-form solution if

* exponential utility v'(c) = ¢~

6c

e noincomeriskand r=0sothata=y — c(and a > 0)

=

s(a) = —V2va,

c(a) =y +V2va, Vo=

D

* Accuracy with / = 30 grid points (c(a) = numerical solution)

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1
0

~ = Closed-form solution c(a)| ]

—— Numerical solution, é(a)

0.2

0.4 0.6 0.8
Wealth a

S

Percentage Error, 100 x (é(a) — ¢(a))/cl

0.05

0 0.2 0.4 0.6 0.8 1
Wealth, a


http://www.princeton.edu/~moll/HACTproject/HJB_accuracy1.m

Accuracy of Finite Difference Method, Experiment 2

® S€e€ http://www.princeton.edu/~moll/HACTproject/HJB_accuracy2.m
¢ Consider HJB equation with continuum of income types

pv(a,y) = max u(c)+0,v(a, y)(y+ra—c)+u(y)d,v(a )+ 7528y, v(a, y)

e Compute twice:
1. with very fine grid: / = 3000 wealth grid points
2. with coarse grid: | = 300 wealth grid points
then examine speed-accuracy tradeoff (accuracy = error in agg C)

Speed (in secs) | Aggregate C
| = 3000 0.916 1.1541
I =300 0.076 1.1606
row 2/row 1 0.0876 1.005629

* j.e. going from / = 3000 to / = 300 yields > 10x speed gain and
0.5% reduction in accuracy (but note: even | = 3000 very fast)

e Other comparisons? Feel free to play around with HIB_accuracy2.m


http://www.princeton.edu/~moll/HACTproject/HJB_accuracy2.m
HJB_accuracy2.m

