What if ...? The Economic Effects for Germany of a Stop of Energy Imports from Russia

Bachmann, Baqaee, Bayer, Kuhn, Löschel, Moll, Peichl, Pittel, Schularick

Markus' Academy

April 7, 2022

Objectives

Assess economic consequences for Germany of cut-off from Russian energy imports

- either embargo by Germany/EU
- or stop of deliveries by Russia

Worst-case scenario of cold turkey complete import stop

- ► arguably bounds other scenarios, say tariff
- less extreme policies may trigger full stop by Russia

Get sense of rough magnitudes of economic losses relative to "do nothing" baseline

- 1. Small GDP decline, say 0.5-1%, perhaps not even a recession?
- 2. Like Covid = 4.5% decline in German GDP?
- 3. Like Spain or Portugal during Euro crisis (5.1% & 7%)?
- 4. "Mass unemployment and poverty" so perhaps like Great Depression?

Takeaways

Economic losses relative to "do nothing" baseline?

- 1. Small GDP decline, say 0.5-1%, perhaps not even a recession?
- 2. Like Covid = 4.5% decline in German GDP?
- 3. Like Spain or Portugal during Euro crisis (5.1% & 7%)?
- 4. "Mass unemployment and poverty" so perhaps like Great Depression?

Headline numbers: GDP decline between 0.5% and 3%

Takeaways

- 1. Import stop likely somewhat less severe than Covid recession
- 2. That was a recession in which we were able to provide insurance & socialize costs

Not in paper but will talk about it

► Effects of import stop on inflation

German primary energy usage

	Oil	Gas	Coal	Nuclear	Renew.	Rest	Total
TWh	1077	905	606	209	545	45	3387
%	31.8	26.7	17.9	6.2	16.1	1.3	100
of which Russia	34%	55%	26%	0%	0%	0%	30%

Oil and coal have global market (+ a strategic reserve)

Gas much trickier due to pipeline network, small LNG supplies ⇒ focus on gas

Size of the gas shock

Lose 55% of gas but some substitution possible (Bruegel, 2022, and others)

- ► Relevant time horizon: roughly until next winter (seasonality of gas demand)
- ► Increase gas imports from NOR, NL,...
- ► Substitute some gas in electricity generation (lignite, hard coal, nuclear)
- ► Lose 55% of gas, import or substitute 25% \Rightarrow gas \downarrow 30%
- ightharpoonup energy shock: gas \downarrow 30% or equivalently energy (gas+oil+coal) \downarrow 8%

German government report on May 1: in mid April dependence on Russian

■ gas down to 35% (from 55%), oil down to 12% (from 35%), coal down to 8% https://www.bmwk.de/Redaktion/DE/Downloads/Energie/0501_fortschrittsbericht_energiesicherheit.html

Right in line with our assumptions, arguably faster:

- ▶ still lots of time until next winter (= our time horizon for substitution)
- ▶ still room for substituting gas in electricity generation (12% of total)

Plan for remainder of talk

- 1. Some facts about German economy and its energy dependence
- 2. Starting from facts, map energy shock into GDP/GNE losses using macro models
 - simplest model: importance of substitutability
 - sufficient statistics formula for richer models with supply chains (Baqaee-Farhi)
 - model simulations: supply chains and international trade
- 3. Mechanisms outside models and other studies
- 4. France and other EU countries, embargo vs tariff

Facts I: Energy Dependence of German Economy

1. Consumption of gas, oil and coal: 4% of GNE

2. Imports of gas, oil and coal: 2.5% of GNE

3. Consumption of gas (also = imports): 1.2% of GNE

4. Gas usage and economic importance of broad economic sectors

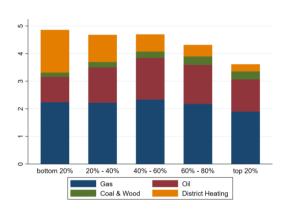
	Households	Industry	Services, T&C	Electricity Gen.	Other
Gas usage (%)	30.8	36.9	12.8	12.6	6.9
Employment (%)		22.6	72.8	0.6	2.9
Gross Value Added (%)		25.9	69.7	2.2	2.3

Sources: BDEW (2021) and Eurostat (2020)

https://ec.europa.eu/eurostat/databrowser/view/NAMA_10_A64_E__custom_2410757/default/table?lang=enhttps://ec.europa.eu/eurostat/databrowser/view/NAMA_10_A64__custom_2410837/default/table?lang=en

Numbers in 1.-3. small. But energy = critical input \Rightarrow amplification important.

Facts II: Hardest Hit Industries


	2022 Crisi	s (Import	Stop)	2020 Cri	2020 Crisis (Covid-19)			
	Chemicals	Food+	Metal	Air Trans.	Hosp.	Entert.		
Employees (in 1,000)	352	941	271	66	1894	693		
Employees (% of total)	0.78	2.08	0.60	0.15	4.18	1.53		
GVA (in €bln)	46	47	21	7	51	43		
Gross Output (in €bln)	137	195	104	25	104	69		
Share males (in %)	74	52	88	46	47	49		
Share gas (%)	37	12	10					

Source: Volkswirtschaftliche Gesamtrechnungen (2019)

3 hardest hit sectors:

- ► Make up 59% of industrial gas usage
- ▶ In terms of GVA, wages, and employees comparable to hardest hit sectors in 2020
- ▶ Big difference in gender to sectors shut down in 2020

Facts III: Direct exposure across the income distribution

- Expenditure shares for heating between 3-5%
- Relatively flat in income (=declining income share)
- ► Larger households have smaller heating shares (not shown)
- Gradient in income the same across household sizes
- ► Share of car fuels (not shown): inverse U-shape in income

Macro models

- ► Starting from facts, map energy shock into GDP/GNE losses using macro models
- ightharpoonup e.g. recall gas = 1.2% of GNE/GDP, gas shock = -30%
- ► Two extreme non-sensical calculations that are inconsistent with data
 - ▶ GDP loss = $1.2\% \times -30\% = -0.3\%$ (Summers: financial crisis \Leftrightarrow electricity http://larrysummers.com/page/5/?s=secular+stagnation)
 - \triangleright no substitutability whatsoever: GDP falls one for one with gas, i.e. -30%
- ▶ Our results: large amplification rel. to naive 0.3% calc but by factor of 10 not 100

Simplest model: CES production function

$$Y = \left[(1-lpha)^{rac{1}{\sigma}} F(K,L)^{rac{\sigma-1}{\sigma}} + lpha^{rac{1}{\sigma}} Gas^{rac{\sigma-1}{\sigma}}
ight]^{rac{\sigma}{\sigma-1}}$$

- lacktriangle Key parameters: elasticity of substitution σ , gas share lpha
- lacktriangle Two extreme cases above are Cobb-Douglas, $\sigma=1$, and Leontief, $\sigma=0$

Elasticities of substitution and substitution more generally

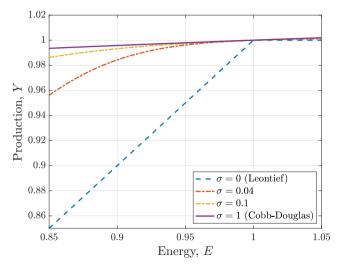
Time dependence (le Chatelier)

- ► Very short run elasticity << long run elasticity
- ► Relevant horizon for import stop: until next winter (seasonality of gas demand)

Micro vs macro elasticities

▶ macro: substitution across production processes / firms (extensive margin)

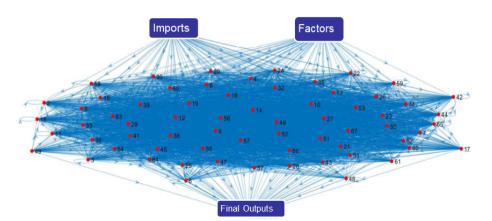
Role of supply chains


- ▶ long supply chains create bottlenecks ...
- ▶ ... but also: the longer the chain, the more substitution possibilities

Substitution via imports

- ▶ substitute intermediate goods that become too expensive with imports
- ightharpoonup gas ightarrow ammonia ightarrow fertilizer ightarrow ...
- ▶ import fertilizer to preserve downstream production

See https://benjaminmoll.com/RussianGas_Substitution/ for more


Output losses for different elasticities of substitution

Small gas share $\alpha \Rightarrow$ even with very low σ output losses potentially far from Leontief

Richer models with supply chains and international trade

- ► Complex production network, i.e. supply chains/production cascades ⇒ allows for spill-overs and increased damages
- ► Multi-country ⇒ substitution via imports possible, e.g. import energy-intense products instead of energy (e.g. basic chemicals, raw metals)

Conceptual Framework: Sufficient Statistics Approach

- ► Two objects of interest:
 - ► German real consumption real GNE, W
 - ► German real production real GDP, Y
- ► GDP includes production of exports, GNE includes consumption of imports
- ► We assume that initial equilibrium German production network is efficient
- ▶ Use of Bagaee-Farhi model sometimes criticized as "long-run trade model"
 - applies to some computational results (which use longer-run trade elasticities)
 - but does not to apply sufficient statistics approach

Conceptual Framework – Second-Order Approximation

► Real consumption change

$$\Delta \log W \approx \sum_{j \in \text{imports}} \frac{p_j m_j}{GNE} \Delta \log m_j - \sum_{i \in \text{exports}} \frac{p_i x_i^X}{GNE} \Delta \log x_i^X + \sum_{f \in \text{factor}} \frac{w_f L_f}{GNE} \Delta \log L_f$$

$$+ \frac{1}{2} \left[\sum_{j \in \text{imports}} \Delta \frac{p_j m_j}{GNE} \Delta \log m_j - \sum_{i \in \text{exports}} \Delta \frac{p_i x_i^X}{GNE} \Delta \log x_i^X + \sum_{f \in \text{factors}} \Delta \frac{p_f L_f}{GNE} \Delta \log L_f \right].$$

Real production change

$$\Delta \log Y \approx \sum_{f \in \text{factor}} \frac{w_f L_f}{GDP} \Delta \log L_f + \frac{1}{2} \sum_{f \in \text{factor}} \Delta \frac{w_f L_f}{GDP} \Delta \log L_f.$$

$$\Delta \log W \approx \sum_{j \in \text{imports}} \frac{p_j m_j}{GNE} \Delta \log m_j - \sum_{i \in \text{exports}} \frac{p_i x_i^X}{GNE} \Delta \log x_i^X + \sum_{f \in \text{factor}} \frac{w_f L_f}{GNE} \Delta \log L_f$$

$$+ \frac{1}{2} \left[\sum_{j \in \text{imports}} \Delta \frac{p_j m_j}{GNE} \Delta \log m_j - \sum_{i \in D} \Delta \frac{p_i x_i^X}{GNE} \Delta \log x_i^X + \sum_{f \in F} \Delta \frac{p_f L_f}{GNE} \Delta \log L_f \right].$$

- Key uncertainties:
 - $ightharpoonup \Delta \log m$: size of the shock reduction in energy imports.

$$\Delta \log W \approx \sum_{j \in \text{imports}} \frac{p_j m_j}{GNE} \Delta \log m_j - \sum_{i \in \text{exports}} \frac{p_i x_i^X}{GNE} \Delta \log x_i^X + \sum_{f \in \text{factor}} \frac{w_f L_f}{GNE} \Delta \log L_f$$

$$+ \frac{1}{2} \left[\sum_{j \in \text{imports}} \Delta \frac{p_j m_j}{GNE} \Delta \log m_j - \sum_{i \in D} \Delta \frac{p_i x_i^X}{GNE} \Delta \log x_i^X + \sum_{f \in F} \Delta \frac{p_f L_f}{GNE} \Delta \log L_f \right].$$

- Key uncertainties:
 - $ightharpoonup \Delta \log m$: size of the shock reduction in energy imports.
 - $ightharpoonup \Delta \frac{p_j m_j}{GNF}$: change in expenditures complementarities/essentialness.

$$\Delta \log W \approx \sum_{j \in \text{imports}} \frac{p_j m_j}{GNE} \Delta \log m_j - \sum_{i \in \text{exports}} \frac{p_i x_i^X}{GNE} \Delta \log x_i^X + \sum_{f \in \text{factor}} \frac{w_f L_f}{GNE} \Delta \log L_f$$

$$+ \frac{1}{2} \left[\sum_{j \in \text{imports}} \Delta \frac{p_j m_j}{GNE} \Delta \log m_j - \sum_{i \in D} \Delta \frac{p_i x_i^X}{GNE} \Delta \log x_i^X + \sum_{f \in F} \Delta \frac{p_f L_f}{GNE} \Delta \log L_f \right].$$

- Key uncertainties:
 - $ightharpoonup \Delta \log m$: size of the shock reduction in energy imports.
 - $ightharpoonup \Delta \frac{p_j m_j}{GNF}$: change in expenditures complementarities/essentialness.
 - $ightharpoonup \Delta \log L_f$: unemployment principally due to negative aggregate demand effects.

$$\Delta \log W \approx \sum_{j \in \text{imports}} \frac{p_j m_j}{GNE} \Delta \log m_j + \frac{1}{2} \sum_{j \in \text{imports}} \Delta \frac{p_j m_j}{GNE} \Delta \log m_j + \sum_{f \in \text{factor}} \frac{w_f L_f}{GNE} \Delta \log L_f.$$

- Key uncertainties:
 - $ightharpoonup \Delta \log m$: size of the shock reduction in energy imports.
 - $ightharpoonup \Delta \frac{p_j m_j}{GNE}$: change in expenditures complementarities/essentialness.
 - $ightharpoonup \Delta \log L_f$: unemployment principally due to negative aggregate demand effects.

Order of Magnitudes Calculation

- ▶ Suppose reduction in gas $\Delta \log m$ is -30%.
- ► Gas share of GNE/GDP is 1.2%.
- ▶ Suppose expenditure share quadruples (comparable to oil crisis in 70s).
- ▶ Then

$$\Delta \log W \approx \frac{p_j m_j}{GNE} \Delta \log m_j + \frac{1}{2} \Delta \frac{p_j m_j}{GNE} \Delta \log m_j$$

$$= 1.2\% \times \log(0.7) + \frac{1}{2} \times 3.6\% \times \log(0.7) \approx -1\%$$

► To go further, use a series of structural models.

The Numbers

	Baqaee-Farhi suff. statistic	Baqaee-Farhi simulation	Simplest model 10% energy ↓	Simplest model 30% gas ↓
GNE Loss, in %	< 1	< 0.3	1.5	2.3
As % of GDP	< 1	< 0.3	1.3	2.2
Per capita	€400	€100	€600	€900

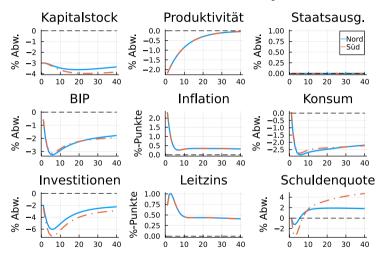
- ► All Models use conservative elasticity estimates
- ► Simplest model (= production fn) abstracts from trade/substitution downstream

What is missing from calculations on previous page?

Business Cycle amplification effects

- ► Additional real and nominal frictions:
 - E.g. wage and price stickiness, financial frictions
 - ▶ \Rightarrow Contracts aggregate demand $\Rightarrow \Delta \log L < 0$
- ► Compensate lack of such frictions with pessimistic calibration throughout:
 - Halve elasticities
 - Round up headline number (e.g. from 2.2 to 3%)
 - Focus on simple model where import substitution is absent
- But, note that:
 - 1. BF model has adjustments costs (fixed K and L)
 - 2. Run pessimistic sticky price scenarios in BF:
 - \Rightarrow amplification by at most $\times 2$
 - 3. Policy response can potentially attenuate significant part of amplification

Since business cycle amplification effects were missing . . .


Model

- ► Keynesian model with heterogeneous households
- ► Work by Bayer, Kriwoluzky, Seyrich & Müller (DIW, 2022)

The shock

- ▶ 3% of capital become obsolete (depreciation shock)
- ► TFP drops initially by 2.2%

Business Cycle Effects

- Assumption is lenient fiscal policy
- ECB increases interest rates to "lean against" rising inflation

Other Studies

N TABLE 3

Selected scenarios on the consequences of an intensification of the conflict for the economic outlook

Institution	Scenario	Assumptions	GDP- deduc- tion ¹	Additio- nal infla- tion ¹	Region
Effects relative to a	baseline scenario incorporating the	state of the conflict and sanctions	at time o	f publicat	ion
Deutsche Bank Research ²	Negative scenario with a temporary import stop of natural gas and oil from Russia	top of (Oil 140 US-\$/barrel; natu-		1-1.5	Germany
ECB ²	Adverse scenario	Sharp temporary increase of natural gas prices and increase of oil prices	1.2	0.8	Euro area
ECB ²	Severe scenario	Sharper and longer increase of natural gas and oil prices; strong second round effects	1.4	2.0	Euro area
Oxford Economics ²	Stop of Russian natural gas imports for 6 months	Oil price between 100 and 115 US-\$/barrel, natural gas price at 190 €/MWh	1.5	2.6	Euro area
Goldman Sachs ²	Stop of russian natural gas imports		2.2	-	Euro area
Effects relative to a	baseline scenario not incorporating	the state of the conflict and sanc	tions at tin	ne of publ	ication
EcoAustria ² (Köppl- Turvna et al.)	Increase of natural gas prices and stop of exports to Russia	Natural gas price of 172 €/ MWh and no exports to Russia and to Ukraine	1.3	-	Austria
NIESR ² (Liadze et al.)		Oil price at 140 US-\$/barrel higher public spending	0.8	2.5	Euro area
Estimates of Bachr	nann et al. (2022)				
Bachmann et al. ³	Cessation of trade between Russia and the EU	Introduction of trade barriers in the model of Baqaee and Farhi (2021), which lead to a stop of all imports from Russia to the EU	0.2-0.3	-	Germany
Bachmann et al. ⁴	Stop of Russian natural gas imports	30 % decline of natural gas imports; elasticity of subs- titution between natural gas and other inputs of 0.1	2.2	-	Germany
Bachmann et al. ⁵	Stop of Russian energy imports	30 % decline of energy imports; change of the cost share of energy imports in the GNE by 5 percentage points to 7.5 %	1.4	-	Germany

Table from excellent review by German Council of Economic Experts

Our review with additional studies: https://benjaminmoll.com/RussianGas_Literature/

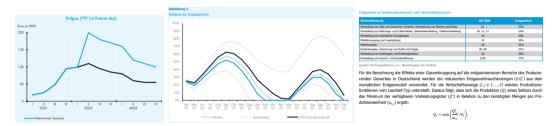
Summary: no single study has found

- ► GDP deviation > 5.3%
- ► recession with GDP drop > 2.5%

Report by German Council of Economic Experts

Very well done. Highly recommended.

- ► German version: https://www.sachverstaendigenrat-wirtschaft.de/fileadmin/dateiablage/ Konjunkturprognosen/2022/KJ2022_Kasten3.pdf
- ► Shortened English version: https://www.sachverstaendigenrat-wirtschaft.de/fileadmin/dateiablage/Konjunkturprognosen/2022/KJ2022_Box3_Excerpt.pdf


No bottom line numbers in text but Volker Wieland clarified they mean 3-5% GDP loss

too pessimistic for our taste but good to be cautious

Shoutout not just to the "sages" but also the team (Niklas Garnadt, Lars Other & co)

Gemeinschaftsdiagnose (main econ institutes joint analysis)

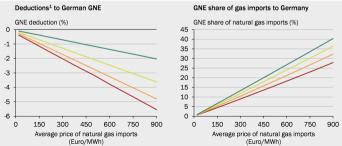
Full-blown macro analysis, including detailled modeling of energy sector, gas storage etc

Interestingly, Gemeinschaftsdiagnose model has Leontief production all over the place

Main text https://gemeinschaftsdiagnose.de/wp-content/uploads/2022/04/GDF2022_Gesamtdokument_unkorrieigert_12.4_13h.pdf Appendix https://gemeinschaftsdiagnose.de/wp-content/uploads/2022/04/GD22F_Hintergrund-Alternativszenario_final.pdf

Gemeinschaftsdiagnose (main econ institutes joint analysis)

- ► GDP deviations rel. to "do nothing": -0.8% in 2022, -5.3% in 2023 (-3.05% ave)
- ► Year-to-year GDP change with import stop: +1.9% in 2022, -2.2% in 2023


Bruttoinlandsprodukt und Bruttowertschöpfung nach Wirtschaftsbereichen – Alternativszenario

	2022			2023			2022	2023		
	1	- II	III	IV	1	H.	101	IV	2022	2023
		Veränderung gegenüber dem Vorquartal ¹ in %							dem Vorjahr² in %	
Bruttoinlandsprodukt	0,1	0,4	0,8	0,3	-0,5	-4,5	-0,3	5,3	1,9	-2,2
	Abweichung vom Basisszenario in Prozentpunkten									
Bruttoinlandsprodukt	0,0	-0,3	-0,8	-0,7	-1,2	-5,2	-0,8	4,9	-0,8	-5,3

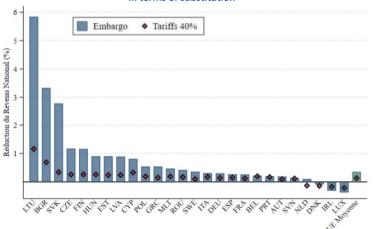
Outlier Study by IMK (German union-funded think tank)

- ► Simulations using NIESR (UK think tank) NiGEM model (see their Infobox 2) https://www.imk-boeckler.de/fpdf/HBS-008284/p_imk_report_174_2022.pdf
- ▶ Deviations of GDP from "do nothing" baseline: -6% in 2022
 - ▶ alternatively, "damage so high that model runs into stability problems"
- ▶ Based on feeding in 45-fold(!) gas price increase: ~€20/MWh to ~€900/MWh
- ► Huge price increase, small quantity reduction ⇒ gas expenditure share goes crazy https://twitter.com/ngarnadt/status/1514907211159556099?s=20&t=1kzaHKKIn5U8tsJTfVkb0g

Criticisms we haven't discussed yet

Krebs (2022)

- ▶ should have separate elasticity of substit'n for chemical industry, lower than 0.05
- ▶ can potentially use Bagaee-Farhi sufficient statistics formula to do this
- ▶ ignore "no chemical industry" rhetoric https://twitter.com/ben_moll/status/1511351172363390976


Scholz (2022) and Habeck (2022)

- "where is the gas actually supposed to run through, where are the pipelines, what is the regasification capacity..."
- "sheer physics stands in the way of these macroeconomic models, the time it takes to build the pipes, pipes that haven't been built yet, ships that aren't there yet..."
- ▶ large part does not seem to be about the macro models (which do respect physics = resource constraints, production functions,...)
 - but that import/substitution of 25% gas, hence 30% gas shock too optimistic?
 - or perhaps want spatial model w transport costs à la Rossi-Hansberg, Redding, ...?
- ► My sense (w/o having done it): such extensions unlikely to drastically ↑ numbers

France and other EU countries, embargo vs tariff

Report for French CEA w Landais & Martin https://www.cae-eco.fr/staticfiles/pdf/cae-focus84.pd

b. Impact of a complete ban vs a 40% tariff on Russian energy imports the most pessimistic calibration in terms of substitution

Conclusion

Costs of Embargo

- Estimated costs are substantial, but not catastrophic.
- ▶ Ballpark: somewhat smaller than COVID, worst-case 3% GDP on impact.
- Estimate is conservative (halved Elasticities, no import substitution on impact, rounding up)
- ▶ Distribution of costs: relatively equal across the income distribution.

Conclusion

Policy

- Make sure the price mechanism works, want people to substitute
- Prevent shock from falling entirely on industry or households, see appendix
- Monetary policy: raise interest rates to control inflation
- Bad fiscal policies: tax subsidies on energy, ...
- ► Make use of policies applied during COVID to socialize losses: bailouts, furlough ("Kurzarbeit"), all to avoid financial spillovers
- ► Substantial inflation effects might require adjustment of tax and transfer schedules

Some words of caution

What we do not say

► Embargo is the only or best policy option

What we do say

- ► Embargo in size comparable to COVID recession
- ▶ That was a recession in which we were able to provide insurance and socialize costs

Distribution of Gas Shock: Industry vs Rest?

Important question: which sector absorbs reduction in gas supplies?

Approximately 1000 TWh of gas, falls by 300 TWh = 30%

Current gas use across sectors (numbers rounded to ease calculation)

	Gas use in TWh
Industry	300
Households, services, electricity etc	700

Scenario 1 (extreme): gas reduction falls entirely on industry. Ind. gas ↓ by 300 TWh (100%)

Scenario 2 (extreme): gas reduction falls entirely on rest. Industrial gas does not fall at all.

Scenario 3: households etc save/substitute 100 TWh. Industrial gas ↓ by 200 TWh (66%)

Scenario 4: even distribution. Gas in all sectors falls by 30%

We assume either scenario 4 or that prices efficiently allocate shortfall

depends on policy choices, more at end of presentation

Recall main results

Baqaee-Farhi	Baqaee-Farhi	Simplest model	Simplest model
suff. statistic	simulation	10% energy ↓	30% gas ↓
< 1	< 0.3	1.5	2.3
< 1	< 0.3	1.3	2.2
€400	€100	€600	€900
	suff. statistic < 1 < 1	$\begin{array}{ccc} \text{suff. statistic} & \text{simulation} \\ & < 1 & < 0.3 \\ & < 1 & < 0.3 \end{array}$	suff. statisticsimulation10% energy \downarrow < 1 < 0.3 1.5 < 1 < 0.3 1.3

- Instead in scenario 3 in which shock falls largely on industry (simple model): industrial gas ↓ 66% \Rightarrow 33% (!) loss of industrial output
- ▶ Prevent shock from falling entirely on industry (or households)