Heterogeneous-Agent Macro as a Gateway to Behavioral Macro

Benjamin Moll London School of Economics

Slides at https://benjaminmoll.com/SCE_behavioral_macro/

Society for Computational Economics, Nice

Present Bias Amplifies the Household Balance-Sheet Channels of Macroeconomic Policy

David Laibson Peter Maxted Benjamin Moll

Society for Computational Economics, Nice

- 1. Heterogeneous-agent macro as a gateway to behavioral macro: some general considerations
- 2. Finite-difference methods for solving heterogeneous-agent models
- 3. "Present Bias Amplifies the Household Balance-Sheet Channels of Macroeconomic Policy" with Laibson and Maxted
- 4. Solution methods for HA models with aggregate risk: what we're doing makes no sense and the problem is rational expectations!

Philosophy of heterogeneous-agent macro:

- build things from ground up, take individual behavior seriously
- flesh out implications for macro policy, fluctuations

Enormously successful research program...

Household finance & behavioral econ literatures:

- Empirical findings that are hard to rationalize w optimizing behavior
 - 1. pension saving
 - 2. credit card borrowing
 - 3. mortgage refinancing
 - 4. ...
- Propose alternative models that do rationalize empirical findings

Logical question: Does incorporating such behavior into our (HA) macro models change our thinking about macro policy, fluctuations?

Mortgage refinancing: large delays, sums left on table

Note: Prediction of (S, s) model = refinance whenever incentive > 0 where incentive \approx potential savings = $r_{old} - r_{new}$ – fixed cost (ADL threshold)

• Also: inconsistencies that violate optimal inaction, instead Calvo

Questions:

- 1. Where does this inertia come from?
- 2. Does incorporating it change our thinking about macro policy?

Behavioral macro is well-established field, many important contributions

Most theoretical work uses RA rather than HA models

- RA models hard to connect to micro data
- often top-down approach: pick behavioral biases to fit macro data
- sometimes feels a bit reverse-engineered

Usefulness of heterogeneous-agent modeling? Bottom-up approach

- starting point: empirical findings about individual behavior
- easier to link HA models to huge body of micro work in household finance, behavioral econ, psychology,...

This talk: (baby) attempt at doing this = paper with Laibson and Maxted

A number of other recent HA macro papers move in same direction Auclert-Rognlie-Straub, Boutros, Maxted, Laibson-Maxted-Moll, Lian, Kueng, ...

Finite-difference methods for solving heterogeneous agent models

- Achdou-Han-Lasry-Lions-Moll (2022) "Income and Wealth Distribution in Macro: A Continuous-Time Approach" https://benjaminmoll.com/HACT/
- 2. Website with COdes https://benjaminmoll.com/codes/
 - Key idea: solve HA models as systems of PDEs

Examples of impressive advances by others building on this idea: aggregate risk

- FernandezVillaverde-Hurtado-Nuno "Financial Frictions and the Wealth Distribution" https://www.sas.upenn.edu/-jesusfv/Financial_Frictions_Wealth_Distribution.pdf
- Schaab "Micro and Macro Uncertainty" https://andreasschaab.com/wp-content/uploads/2020/11/JMP.pdf
- Gu-Lauriere-Merkel-Payne "Deep Learning Solutions to Master Equations for Continuous Time Heterogeneous Agent Macroeconomic Models"

https://drive.google.com/file/d/10xz4moTUIPwgw7Rp8g7XqbiahDmC81KD/view

- Bilal "Solving Heterogeneous Agent Models with the Master Equation" https://drive.google.com/file/d/19g2RmDK-J7dSmi7YXE0SIfosZpJ_dx5H/view
- Lee "The Macroeconomic Effects of Debt Relief Policies during Recessions " https://github.com/soyoung-lee-n/files/blob/master/jmp_soyoung.pdf

Households are heterogeneous in their wealth a and income y, solve

$$\max_{\substack{\{c_t\}_{t\geq 0}}} \mathbb{E}_0 \int_0^\infty e^{-\rho t} u(c_t) dt \qquad \text{s.t.}$$
$$\dot{a}_t = y_t + r a_t - c_t$$
$$y_t \in \{y_1, y_2\} \text{ Poisson with intensities } \lambda_1, \lambda_2$$
$$a_t \geq \underline{a}$$

- c_t : consumption
- *u*: utility function, u' > 0, u'' < 0
- *ρ*: discount rate
- r : interest rate
- $\underline{a} \ge -y_1/r$ if r > 0: borrowing limit e.g. if $\underline{a} = 0$, can only save

Carries over to y_t = more general processes, e.g. diffusion

Equilibrium (Huggett): bonds in fixed supply, i.e. aggregate a_t = fixed

Typical Consumption and Saving Policy Functions

$$\rho v_j(a) = \max_c \ u(c) + v'_j(a)(y_j + ra - c) + \lambda_j(v_{-j}(a) - v_j(a))$$
(HJB)

$$0 = -\frac{d}{da}[s_j(a)g_j(a)] - \lambda_j g_j(a) + \lambda_{-j}g_{-j}(a),$$
(KF)
$$s_j(a) = y_j + ra - c_j(a) = \text{saving policy function from (HJB)},$$
$$\int_a^{\infty} (g_1(a) + g_2(a))da = 1, \quad g_1, g_2 \ge 0$$

$$S(r) := \int_{\underline{a}}^{\infty} ag_1(a)da + \int_{\underline{a}}^{\infty} ag_2(a)da = B, \qquad B \ge 0$$
 (EQ)

 The two PDEs (HJB) and (KF) together with (EQ) fully characterize stationary equilibrium Computational Advantages relative to Discrete Time

- 1. Borrowing constraints only show up in boundary conditions
 - FOCs always hold with "="
- 2. "Tomorrow is today"
 - FOCs are "static", compute by hand: $c^{-\gamma} = v_a(a, y)$ (EGM)
- 3. Sparsity
 - solving Bellman, distribution = inverting matrix
 - but matrices very sparse ("tridiagonal")
 - reason: continuous time \Rightarrow one step left or one step right
- 4. Two birds with one stone
 - tight link between solving (HJB) and (KF) for distribution
 - matrix in discrete (KF) is transpose of matrix in discrete (HJB)
 - reason: diff. operator in (KF) is adjoint of operator in (HJB)

- non-convexities
- stopping time problems see Laibson-Maxted-Moll paper
- multiple assets
- transition dynamics
- aggregate shocks

Finite-difference methods for solving HJB equation

• HJB equation in HA model

$$\rho v_j(a) = \max_c u(c) + v'_j(a)(y_j + ra - c) + \lambda_j(v_{-j}(a) - v_j(a)), \quad j = 1, 2$$

- Will discretize and solve using finite difference method
- Discretization \Rightarrow system of non-linear equations

$$\rho \mathbf{v} = \mathbf{r}(\mathbf{v}) + \mathbf{A}(\mathbf{v})\mathbf{v}$$

where A is a sparse (tri-diagonal) transition matrix

Finite-difference methods for solving HJB equation

- Generic HJB equation (operator A = infinitesimal generator) $\rho v(x) = \max_{\alpha} r(x, \alpha) + (A_{\alpha}v)(x)$
- Will discretize and solve using finite difference method
- Discretization \Rightarrow system of non-linear equations

$$ho \mathbf{v} = \mathbf{r}(\mathbf{v}) + \mathbf{A}(\mathbf{v})\mathbf{v}$$

where A is a sparse (tri-diagonal) transition matrix

Finite-difference methods for solving HA models

- Use finite difference method: https://benjaminmoll.com/codes/
- Discretize state space a_i , i = 1, ..., I with step size Δa

$$v'_{j}(a_{i}) \approx \frac{v_{i+1,j} - v_{i,j}}{\Delta a} \quad \text{or} \quad \frac{v_{i,j} - v_{i-1,j}}{\Delta a}$$

Denote $\mathbf{v} = \begin{bmatrix} v_{1}(a_{1}) \\ \vdots \\ v_{2}(a_{l}) \end{bmatrix}$, $\mathbf{g} = \begin{bmatrix} g_{1}(a_{1}) \\ \vdots \\ g_{2}(a_{l}) \end{bmatrix}$, dimension = $2l \times 1$

• End product of FD method: system of sparse matrix equations

$$\rho \mathbf{v} = \mathbf{u}(\mathbf{v}) + \mathbf{A}(\mathbf{v}; r) \mathbf{v}$$
$$\mathbf{0} = \mathbf{A}(\mathbf{v}; r)^{\mathsf{T}} \mathbf{g}$$
$$B = S(\mathbf{g}; r)$$

which is easy to solve on computer

Present Bias Amplifies the Household Balance-Sheet Channels of Macroeconomic Policy

David Laibson Peter Maxted Benjamin Moll

Society for Computational Economics, Nice

Idea with long tradition (Strotz 1956, ...)

- dynamically inconsistent preferences alter dynamic choices
- particular form with strong empirical support: present bias (e.g. Ashraf-Karlan-Yin, Augenblick-Niederle-Sprenger, Laibson-Maxted-Repetto-Tobacman, ...)

Monetary and fiscal policy \Rightarrow household consumption and saving

• = leading examples of dynamic choices affected by present bias

To what extent does present bias alter impact of these policy tools?

(To be clear: present bias = β - δ preferences = quasi-hyperbolic discounting)

Develop partial-equilibrium heterogeneous-household model with

- 1. rich household balance sheets ("Aiyagari w mortgages & housing") (e.g. Guerrieri-Lorenzoni-Prato, Wong, Eichenbaum-Rebelo-Wong, Kaplan-Mitman-Violante,...)
 - o assets: liquid wealth and illiquid housing
 - liabilities: credit card debt and fixed-rate mortgages
 - liquidity constraints
- 2. present biased preferences
 - naïve present bias with procrastination

Goal: understand how interaction of (1)+(2) affects policy transmission

Our Scope: Monetary Policy Transmission

Important: today \neq GE analysis, want to first understand PE Paper: speculative discussion through lens of HANK literature

Our Scope: Monetary Policy Transmission

Important: today \neq GE analysis, want to first understand PE

Paper: speculative discussion through lens of HANK literature

What We Find

1. Fiscal policy

- present bias amplifies potency
- generically increases economy's average MPC
- 2. Monetary policy
 - present bias amplifies potency...
 - cash-out refis = liquidity injections to high-MPC households
 - ... but at same time slows down transmission speed
 - refinancing inertia due to procrastination

Both effects of present bias move model toward data

Monetary policy is struggling to tame inflation - help explain this?

- 3. Methods
 - continuous-time present bias, option value problem via HJBQVI

Model

- 1. Household balance sheets: "Aiyagari with mortgages & housing"
- 2. Time preferences: naïve present bias
- 3. Refinancing procrastination

Household Balance Sheets

- Continuum of households
- Stochastic income y_t , liquid wealth b_t , housing h, mortgage m_t
- Can refinance mortgage at cost (both \$ and effort details later)
- When not refinancing:

$$\dot{b}_t = y_t + r_t b_t + \omega^{cc} b_t^- - (r_t^m + \xi)m_t - c_t$$

$$\dot{m}_t = -\xi m_t$$

- credit card limit: $b_t \ge \underline{b}$
- LTV constraint: $m_t \leq \theta h$
- Note shortcut: housing *h* is fixed and cannot be adjusted
 ⇒ when taking to data, restrict to home-owners who do not move
- "Monetary policy": exogenous process for liquid rate r_t
- Mortgage interest rate r_t^m fixed until refinance, then $r_t^m = r_t + \omega^m$

- 1. Rate refinancing motive
 - Lower mortgage interest payments if market rate falls
- 2. Cash-out refinancing motive
 - Access home equity during low-income spells (c smoothing)
 - Replace expensive credit card debt w cheaper mortgage debt

- Model: refinancing is costly
 - $\circ~{\rm fixed~cost}~\kappa^{\rm refi},$ effort cost $\bar{\varepsilon}\approx 0$

Key behavioral element: present bias = β - δ discounting

Additional assumption: households are naive about their present bias

Key behavioral element: present bias = β - δ discounting

Additional assumption: households are naive about their present bias

Discrete-time warmup:

 \circ Current self discounts all future selves by eta < 1

$$u(c_0) + \beta \sum_{t=1}^{\infty} \delta^t u(c_t)$$

• Naïveté: current self believes future selves time-consistent ($\beta = 1$) \Rightarrow no game between current and future selves Key behavioral element: present bias = β - δ discounting

Additional assumption: households are naive about their present bias

Continuous time:

- $\circ~$ Current self discounts all future selves by $\beta < 1$
- $\circ~$ Take period length $\rightarrow 0$

(Laibson-Maxted, Augenblick, Augenblick-Rabin, McClure et al.)

Refinancing Procrastination

Large empirical literature: households slow to refinance – think Calvo (e.g. Andersen-Campbell-Nielsen-Ramadorai, Keys-Pope-Pope,...)

Naïve $\beta < 1$ naturally generates such refinancing procrastination

- Key ingredient: effort $\cos t \bar{\epsilon} \approx 0$
- Application of result from theory literature (O'Donoghue-Rabin): naïfs procrastinate on immediate-cost delayed-benefit tasks
- Take $\bar{\varepsilon} \rightarrow 0$: no effect when $\beta = 1$ but procrastination when $\beta < 1$
- Monetary cost not enough. See discussion in paper.

How get Calvo? Stochastic $\varepsilon_t \in \{\underline{\varepsilon}, \overline{\varepsilon}\}$, flicks from $\overline{\varepsilon}$ to $\underline{\varepsilon}$ at rate ϕ

- $\underline{\varepsilon} < \beta \overline{\varepsilon} \Rightarrow$ procrastinate whenever $\varepsilon_t = \overline{\varepsilon}$, refi whenever $\varepsilon_t = \underline{\varepsilon}$
- True even though we take limit as $\underline{\varepsilon}, \overline{\varepsilon} \to 0$

Methods Effect of $\beta < 1$ on Policy Functions Without mortgage adjustment: standard HJB equation

$$\rho v(x) = \max_{c} u(c) + (\mathcal{A}v)(x)$$

With mortgage adjustment: "HJB quasi-variational inequality"

$$\rho v(x) = \max \left\{ \max_{c} u(c) + (\mathcal{A}v)(x) , \rho(v^*(x) - \varepsilon) \right\}$$

• $x = (b, m, y, r, r^m)$ = household state variables

- operator A = infinitesimal generator for x (no adjustment)
- $v^*(x) \varepsilon$ = value of mortgage adjustment
- ε = effort cost

How solve this? Linear complementarity problem (LCP)

- In contrast to "smooth pasting", works beautifully even w 5D state
- http://benjaminmoll.com/Lecture2_Rochester/, section "Stopping Time Problems"
- Codes labelled "Stopping Time Problems" at http://benjaminmoll.com/codes/

Effect of present bias on consumption

Warmup: continuous-time FOC and Euler equation with $\beta = 1$

1. FOC for today vs future:

$$u'(c) = \frac{\partial v(x)}{\partial b}$$

where $x = (b, m, y, r, r^m)$ = household state variables

2. Euler equation:

$$\frac{\mathbb{E}_t[du'(c_t)]/dt}{u'(c_t)} = \rho - r_t(b_t)$$

Note: no discounting in FOC, unlike discrete-time $u'(c) = \delta \mathbb{E} \left[\frac{\partial}{\partial b} v(x') \right]$ (Comes from HJB equation $\rho v(x) = \max_{c} u(c) + \frac{\partial v(x)}{\partial b} (y + rb + ... - c)$) Effect of present bias on consumption

Continuous-time FOC and Euler equation with present bias, $\beta < 1$

1. FOC for today vs future:

$$u'(c) = \frac{\beta}{\partial b} \frac{\partial v(x)}{\partial b}$$

and naïveté $\Rightarrow v(x) =$ time-consistent value function ($\beta = 1$)

2. **Euler equation:** (Maxted, 2022) $\frac{\mathbb{E}_t[du'(c_t)]/dt}{u'(c_t)} = \left[\rho + \gamma \left(1 - \beta^{\frac{1}{\gamma}}\right) \frac{\partial c(x_t)}{\partial b}\right] - r_t(b_t)$

3. When unconstrained, households overconsume by $\beta^{-1/\gamma} > 1$

 $c(x) = \beta^{-1/\gamma} \widehat{c}(x)$ where $\widehat{c}(x) =$ time-consistent policy fn (*)

Observation: interaction of $\beta < 1$ with liquidity constraint is critical. Otherwise (*) $\Rightarrow \beta < 1$ and $\beta = 1$ observationally equivalent

Calibration and Results

Always show results for 3 cases

- 1. Rational Benchmark: $\beta = 1$, Procrastination
- 2. Intermediate Case: $\beta < 1$, Procrastination
- 3. Behavioral Benchmark: $\beta < 1$, Procrastination

Discount Function

- Calibrate discount function to match empirical wealth moments
- 2016 SCF wave of home owners who don't move:
 - Average LTV = 0.54
 - Average credit card debt to income ratio = 0.09

	Data	Exponential	Intermediate	Present-Bias
		Benchmark	Case	Benchmark
Discount Function				
β	-	1	0.7	0.83
ρ	-	1.65%	0.66%	1.08%
Calibration Targets				
LTV	0.54	0.54	0.54	0.54
Avg. CC Debt	0.09	0.04	0.09	0.09
Share CC Debt > 0	60%	27%	51%	46%

Fiscal Policy: \$1000 Helicopter Drop

• Present bias $\beta < 1$ robustly amplifies potency of fiscal policy

Fiscal Policy: \$1000 Helicopter Drop

• Present bias $\beta < 1$ robustly amplifies potency of fiscal policy

Fiscal Policy: \$1000 Helicopter Drop

• Present bias $\beta < 1$ robustly amplifies potency of fiscal policy

Present bias amplifies potency of fiscal policy: intuition

• $\beta < 1$ creates large MPCs + large mass of households at <u>b</u>

Monetary Policy: 1% Interest-Rate Cut

Monetary Policy: 1% Interest-Rate Cut

- Present bias $\beta < 1$ amplifies potency of monetary policy ...
 - o cash-out refis imitate liquidity-injection of fiscal policy

Monetary Policy: 1% Interest-Rate Cut

- Present bias $\beta < 1$ amplifies potency of monetary policy ...
- ... but slows transmission speed
 - \circ refi procrastination \Rightarrow "dry powder" ignited more slowly

Summary: Effect of $\beta < 1$ on Magnitude and Timing

• Fiscal and Monetary Policy scaled to impact of $\beta = 1$ case

(a) Fiscal policy

(b) Monetary policy

• Fiscal Policy: $\beta < 1$ amplifies potency

• Monetary Policy: $\beta < 1$ amplifies potency but slows transmission

HA models with aggregate risk What we're doing makes no sense Extremely important model class for macro: heterogeneous-agent models with aggregate risk

- Classic papers by Krusell-Smith and Den Haan from late 90s
- Key challenge: rational expectations + general equilibrium
 ⇒ cross-sectional distribution enters household decision problem
 - true even though households/firms do not really care about distribution and only care about prices
- Lots of extremely impressive advances solving such models
 - see beginning of slides for continuous-time methods
 - but also very impressive discrete-time advances
- My argument in next slides: we're spending a lot of intellectual and computational horse power solving a nonsensical problem

• Intuition: suppose I live in one of our models, only care about r

- Intuition: suppose I live in one of our models, only care about r
 - I'd realize that in equilibrium r depends on distribution f

- Intuition: suppose I live in one of our models, only care about r
 - I'd realize that in equilibrium r depends on distribution f
 - RE \Rightarrow in order to forecast *r*, I'd forecast entire distribution *f*!

- Intuition: suppose I live in one of our models, only care about r
 - I'd realize that in equilibrium r depends on distribution f
 - RE \Rightarrow in order to forecast *r*, I'd forecast entire distribution *f*!

- Makes solution hard/impossible
- But do we really think people do this? I definitely don't

In HA models, rational expectations about equilibrium prices makes no sense. But what should replace it?

- Clear to me: we need to drop RE about equilibrium prices
- Payoff: kill two birds with one stone
 - 1. make model more realistic
 - 2. and solution feasible
- But what should replace RE?
 - natural solution: form expectations about prices directly \neq RE
 - note: different from KS = forecast prices using moments of dist, say mean (exception: moment = price, e.g. Favilukis-L-V)
 - but how exactly? I'm not sure either!
- In summary:
 - I only know the problem, not the solution
 - huge payoff for figuring out sensible solution \Rightarrow go for it!

Conclusion

Present bias amplifies household balance-sheet channels of macroeconomic policy

- 1. Fiscal policy
 - present bias amplifies potency, increases economy's average MPC
- 2. Monetary policy
 - present bias amplifies potency but...
 - ... at same time slows down speed of monetary transmission

Heterogeneous-agent macro as a gateway to behavioral macro

- bottom-up rather than top-down
- for more see https://benjaminmoll.com/research_agenda_2020/

In HA models with aggregate risk, we spend lots of intellectual and computational horsepower solving nonsensical problem

- need to drop rational expectations about equilibrium prices
- open question: what should replace it?

Thanks!