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I.  Introduction

Over the last 30 years, tremendous progress has been made in develop-
ing models that reproduce salient features of the rich heterogeneity in in-
come, wealth, and consumption behavior across households that is rou-
tinely observed in microdata. These heterogeneous agent models often  
deliver strikingly different implications of monetary and fiscal policies 
than do representative agent models, and allow us to study the distri-
butional implications of these policies across households.1 In principle, 
this class of models can therefore incorporate the rich interaction be-
tween inequality and the macroeconomy that characterizes our world: 
on the one hand, inequality shapes macroeconomic aggregates; on the  
other hand, macroeconomic shocks and policies also affect inequality.

Despite providing a framework for thinking about these important 
issues, heterogeneous agent models are not yet part of policymakers’ 
toolboxes for evaluating the macroeconomic and distributional conse-
quences of their proposed policies. Instead, most quantitative analyses 
of the macroeconomy, particularly in central banks and other policy 
institutions, still employ representative agent models. Applied macro-
economists tend to make two excuses for this abstraction. First, they ar-
gue that the computational difficulties involved in solving and analyz-
ing heterogeneous agent models render their use intractable, especially 
compared to the ease with which they can analyze representative agent 
models using software packages like Dynare. Second, there is a percep-
tion among macroeconomists that models that incorporate realistic het-
erogeneity are unnecessarily complicated because they generate only 
limited additional explanatory power for aggregate phenomena. Part 
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2 Ahn, Kaplan, Moll, Winberry, and Wolf

of this perception stems from the seminal work of Krusell and Smith 
(1998), who found that the business cycle properties of aggregates in 
a baseline heterogeneous agent model are virtually indistinguishable 
from those in the representative agent counterpart.2

Our paper’s main message is that both of these excuses are less valid 
than commonly thought. To this end, we make two contributions. First, 
we develop an efficient and easy- to- use computational method for 
solving a wide class of general equilibrium heterogeneous agent macro 
models with aggregate shocks, thereby invalidating the first excuse. Im-
portantly, our method also applies in environments that violate what 
Krusell and Smith (1998) have termed “approximate aggregation,” that 
is, that macroeconomic aggregates can be well described using only the 
mean of the wealth distribution.

Second, we use the method to analyze the time series behavior of a 
rich two- asset heterogeneous agent model parameterized to match the 
distribution of income, wealth, and marginal propensities to consume 
(MPCs) in the microdata. We show that the model is consistent with two 
features of the time series of aggregate consumption that have proven to 
be a challenge for representative agent models: consumption responds to 
predictable changes in income, but at the same time is substantially less 
volatile than realized income. We then demonstrate how a quantitatively 
plausible heterogeneous agent economy such as ours can be useful in 
understanding the distributional consequences of aggregate shocks, thus 
paving the way for a complete analysis of the transmission of shocks 
to inequality. These results invalidate the second excuse: not only does 
macro matter for inequality, but inequality also matters for macro. We 
therefore view an important part of the future of macroeconomics as 
the study of distributions—the representative- agent shortcut may both 
miss a large part of the story (the distributional implications) and get the 
small remaining part wrong (the implications for aggregates).

In Section II, we introduce our computational methodology, which 
extends standard linearization techniques, routinely used to solve rep-
resentative agent models, to the heterogeneous agent context.3 For ped-
agogical reasons, we describe our methods in the context of the Krusell 
and Smith (1998) model, but the methods are applicable much more 
broadly. We first solve for the stationary equilibrium of the model with-
out aggregate shocks (but with idiosyncratic shocks) using a global non-
linear approximation. We use the finite difference method of Achdou 
et al. (2015) but, in principle, other methods can be used as well. This 
approximation gives a discretized representation of the model’s station-
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ary equilibrium, which includes a nondegenerate distribution of agents 
over their individual state variables. We then compute a  first- order Tay-
lor expansion of the discretized model with aggregate shocks around 
the stationary equilibrium. This results in a large, but linear, system of 
stochastic differential equations, which we solve using standard solu-
tion techniques. Although our solution method relies on linearization 
with respect to the economy’s aggregate state variables, it preserves 
important nonlinearities at the micro level. In particular, the response 
of macroeconomic aggregates to aggregate shocks may depend on the 
distribution of households across idiosyncratic states because of hetero-
geneity in the response to the shock across the distribution.

Our solution method is both faster and more accurate than existing 
methods. Of the five solution methods for the Krusell and Smith (1998) 
model included in the Journal of Economic Dynamics and Control compar-
ison project (Den Haan 2010), the fastest takes around seven minutes to 
solve. With the same calibration our model takes around a quarter of a 
second to solve. The most accurate method in the comparison project 
has a maximum aggregate policy rule error of 0.16% (Den Haan’s [2010] 
preferred accuracy metric). With a standard deviation of productivity 
shocks that is comparable to the Den Haan, Judd, and Julliard (2010) 
calibration, the maximum aggregate policy rule error using our method 
is 0.05%. Since our methodology uses a linear approximation with re-
spect to aggregate shocks, the accuracy worsens as the standard devia-
tion of shocks increases.4

However, the most important advantage of our method is not its 
speed or accuracy for solving the Krusell and Smith (1998) model. 
Rather, it is the potential for solving much larger models in which ap-
proximate aggregation does not hold and existing methods are infea-
sible. An example is the two- asset model of Kaplan, Moll, and Violante 
(2016), where the presence of three individual state variables renders 
the resulting linear system so large that it is numerically impossible 
to solve. In order to be able to handle larger models such as this, in 
Section III we develop a  model- free reduction method to reduce the 
dimensionality of the system of linear stochastic differential equations 
that characterizes the equilibrium. Our method generalizes Krusell and 
Smith’s (1998) insight that only a small subset of the information con-
tained in the  cross- sectional distribution of agents across idiosyncratic 
states is required to accurately forecast the variables that agents need 
to know in order to solve their decision problems. Krusell and Smith’s 
(1998) procedure posits a set of moments that capture this information 
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based on economic intuition, and verifies its accuracy ex post using a 
 forecast- error metric; our method instead leverages advances in engi-
neering to allow the computer to identify the necessary information in 
a completely  model- free way.5

To make these methods as accessible as possible, and to encourage 
the use of heterogeneous agent models among researchers and policy-
makers, we are publishing an open- source suite of codes that imple-
ment our algorithms in an easy- to- use toolbox.6 Users of the codes 
provide just two inputs: (1) a function that evaluates the discretized 
equilibrium conditions, and (2) the solution to the stationary equilib-
rium without aggregate shocks. Our toolbox then solves for the equilib-
rium of the corresponding economy with aggregate shocks—linearizes 
the model, reduces the dimensionality, solves the system of stochastic 
differential equations, and produces impulse responses.7

In Sections V and VI, we use our toolbox to solve a two- asset hetero-
geneous agent economy inspired by Kaplan and Violante (2014) and 
Kaplan et al. (2016) in which households can save in liquid and illiquid 
assets. In equilibrium, illiquid assets earn a higher return than liquid 
assets because they are subject to a transaction cost. This economy nat-
urally generates “wealthy hand- to- mouth” households—households 
who endogenously choose to hold all their wealth as illiquid assets and 
to set their consumption equal to their disposable income. Such house-
holds have high MPCs in line with empirical evidence presented in 
Johnson, Parker, and Souleles (2006), Parker et al. (2013), and Fagereng, 
Holm, and Natvik (2016). Because of the two- asset structure and the 
presence of the wealthy hand- to- mouth, the parameterized model can 
match key features of the joint distribution of household portfolios and 
MPCs—properties that one- asset models have difficulty in replicating.8 
Matching these features of the data leads to a failure of approximate 
aggregation, which together with the model’s size, render it an ideal 
setting to illustrate the power of our methods. To the best of our knowl-
edge, this model cannot be solved using any existing methods.

In our first application (Sec. V) we show that inequality can matter 
for macro aggregates. We demonstrate that the response of aggregate 
consumption to an aggregate productivity shock is larger and more 
transitory than in either the corresponding representative agent or one- 
asset heterogeneous agent economies, whereas a shock to productivity 
growth is substantially smaller and more persistent in the two- asset econ-
omy than in either the corresponding representative agent or one- asset 
heterogeneous agent economies. Matching the wealth distribution, in 
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particular the consumption share of hand- to- mouth households, drives 
these findings since hand- to- mouth households are limited in their abil-
ity to immediately increase consumption in response to higher future 
income growth, their impact consumption response is weaker, and their 
lagged consumption response is stronger than the response of non- 
hand- to- mouth households. An implication of these  individual- level 
consumption dynamics is that the two- asset model outperforms the rep-
resentative agent models in terms of its ability to match the smoothness 
and sensitivity of aggregate consumption.9 Jointly matching these two 
features of aggregate consumption dynamics has posed a challenge for 
many benchmark models in the literature (Campbell and Mankiw 1989, 
Christiano 1989, and Ludvigson and Michaelides 2001).

In our second application (Sec. VI) we show that macro shocks can 
additionally matter for inequality, resulting in rich interactions between 
inequality and the macroeconomy. To clearly highlight how quanti-
tatively realistic heterogeneous agent economies such as ours can be 
useful in understanding the distributional consequences of aggregate 
shocks, in Section VI we relax the typical assumption in incomplete 
market models that the  cross- sectional distribution of labor income is 
exogenous. We adopt a nested constant elasticity of substitution (CES) 
production function with  capital- skill complementarity as in Krusell 
et al. (2000), in which high- skilled workers are more complementary 
with capital in production than are low- skilled workers. First, we show 
how a negative shock to the productivity of unskilled labor generates a 
recession that disproportionately hurts low- skilled workers, thus also 
leading to an increase in income and consumption inequality. Second, 
we show how a positive shock to the productivity of capital generates a 
boom that disproportionately benefits high- skilled workers, thus lead-
ing to an increase in income and consumption inequality. The response 
of aggregate consumption to both of these aggregate shocks differs 
dramatically from that in the representative agent counterpart, thereby 
providing a striking counterexample to the main result of Krusell and 
Smith (1998). These findings illustrate how different aggregate shocks 
shape the dynamics of inequality and may generate rich interactions 
between inequality and macroeconomic aggregates.

II.  Linearizing Heterogeneous Agent Models

We present our computational method in two steps. First, in this section 
we describe our approach to linearizing heterogeneous agent models. 
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Second, in Section III we describe our  model- free reduction method for 
reducing the size of the linearized system. We separate the two steps 
because the reduction step is only necessary for large models.

We describe our method in the context of the Krusell and Smith (1998) 
model. This model is a natural expository tool because it is well known 
and substantially simpler than the two- asset model in Section V. As we 
show in Section V, our method is applicable to a broad class of models.

Continuous Time. We present our method in continuous time. While 
discrete time poses no conceptual difficulty (in fact, Campbell [1998], 
Dotsey, King, and Wolman [1999], Veracierto [2002], and Reiter [2009] 
originally proposed this general approach in discrete time), working in 
continuous time has three key numerical advantages that we heavily 
exploit.

First, it is easier to capture occasionally binding constraints and inac-
tion in continuous time than in discrete time. For example, the borrow-
ing constraint in the Krusell and Smith (1998) model below is absorbed 
into a simple boundary condition on the value function and therefore 
the  first- order condition for consumption holds with equality every-
where in the interior of the state space. Occasionally binding constraints 
and inaction are often included in heterogeneous agent models in order 
to match features of microdata.

Second,  first- order conditions characterizing optimal policy functions 
typically have a simpler structure than in discrete time and can often 
be solved by hand.

Third, and most importantly in practice, continuous time naturally 
generates sparsity in the matrices characterizing the model’s equilib-
rium conditions. Intuitively, continuously moving state variables like 
wealth only drift an infinitesimal amount in an infinitesimal unit of time,  
and therefore a typical approximation that discretizes the state space 
has the feature that households reach only states that directly neighbor 
the current state. Our two- asset model in Section V is so large that spar-
sity is necessary to store and manipulate these matrices.10

A.  Model Description

Environment

There is a continuum of households with fixed mass indexed by j ∈ [0, 1] 
who have preferences represented by the expected utility function
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 E0
0

∞

∫ e−rt c jt1−u

1 − u
dt, 

where ρ is the rate of time preference and θ is the coefficient of relative 
risk aversion. At each instant t, a household’s idiosyncratic labor pro-
ductivity is zjt ∈ zL, zH{ } with zL < zH. Households switch between the 
two values for labor productivity according to a Poisson process with 
arrival rates λL and λH.11 The aggregate supply of efficiency units of la-
bor is exogenous and constant and denoted by N = ∫0

1 zjtdj. A house-
hold with labor productivity zjt earns labor income wtzjt. Markets are 
incomplete; households can only trade in productive capital ajt subject 
to the borrowing constraint ajt ≥ 0.

There is a representative firm that has access to the Cobb- Douglas 
production function

 Yt = eZtKt
aNt

1−a, 

where Zt is (the logarithm of) aggregate productivity, Kt is aggregate 
capital, and Nt is aggregate labor. The logarithm of aggregate produc-
tivity follows the  Ornstein- Uhlenbeck process

 dZt = −hZtdt + sdWt, (1)

where dWt is the innovation to a standard Brownian motion, η is the 
rate of mean reversion, and σ captures the size of innovations.12

Equilibrium

In equilibrium, household decisions depend on individual state vari-
ables specific to a particular household, and aggregate state variables, 
which are common to all households. The individual state variables are 
capital holdings a and idiosyncratic labor productivity z. The aggregate 
state variables are aggregate productivity Zt and the  cross- sectional dis-
tribution of households over their individual state variables, gt(a, z).

For notational convenience, we denote the dependence of a given 
equilibrium object on a particular realization of the aggregate state (gt(a, 
z), Zt) with a subscript t. That is, we use time- dependent notation with 
respect to those aggregate states. In contrast, we use recursive notation 
with respect to the idiosyncratic states (a, z). This notation anticipates 
our solution method that linearizes with respect to the aggregate states 
but not the idiosyncratic states.13 An equilibrium of the model is char-
acterized by the following equations:
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rvt(a, z) =

c
max u(c) + ∂avt(a, z)(wtz + rta − c)

+ lz(vt(a, ′z ) − vt(a, z)) +
1

dt
Et[dvt(a, z)], a ≥ 0

 (2)

 dgt(a, z)
dt

= − ∂a[st(a, z)gt(a, z)] − lzgt(a, z) + l ′z gt(a, ′z ), (3)

 dZt = −hZtdt + sdWt, (4)

 wt = (1 − a)eZtKt
aN−a, (5)

 rt = aeZtKt
a−1N1−a − d, (6)

 Kt = ∫agt(a, z)dadz. (7)

Here st(a, z) = wtz + rta − ct(a, z) is the optimal saving policy function cor-
responding to the household optimization problem (2) and here and else-
where (1/dt)Et[dvt] is short-hand notation for lims↓0 Et[vt+ s − vt]/s.

For detailed derivations of these equations, see Achdou et al. (2015). 
The household’s  Hamilton- Jacobi- Bellman equation (2) is the  continuous-  
time analog of the discrete-time Bellman equation. The flow value of a 
household’s lifetime utility is given by the sum of four terms: the flow 
utility of consumption, the marginal value of savings, the expected change 
due to idiosyncratic productivity shocks, and the expected change due to 
aggregate productivity shocks. Due to our use of time- dependent nota-
tion with respect to aggregate states, Et denotes the conditional expecta-
tion with respect to aggregate states only.14 The Kolmogorov Forward 
equation (3) describes the evolution of the distribution over time. The 
flow change in the mass of households at a given point in the state space 
is determined by their savings behavior and idiosyncratic productivity 
shocks. Equation (4) describes the evolution of aggregate productivity. 
Finally, equations (5), (6), and (7) define prices given the aggregate state.

We define a steady state as an equilibrium with constant aggregate 
productivity Zt = 0 and a time- invariant distribution g(a, z). The  steady-  
state system is given by

 rv(a, z) =
c

max u(c) + ∂av(a, z)(wz + ra − c)

+ lz(v(a, ′z ) − v(a, z)), a ≥ 0
 (8)

 0 = − ∂a[s(a, z)g(a, z)] − lzg(a, z) + l ′z g(a, ′z ), (9)

 w = (1 − a)KaN−a, (10)
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 r = aKa−1N1−a − d, (11)

 K = ∫ag(a, z)dadz. (12)

B.  Linearization Procedure

Our linearization procedure consists of three steps. First, we solve for 
the steady state of the model without aggregate shocks, but with id-
iosyncratic shocks. Second, we take a  first- order Taylor expansion of 
the equilibrium conditions around the steady state, yielding a linear 
system of stochastic differential equations. Third, we solve the linear 
system using standard techniques. Conceptually, each of these steps is 
a straightforward extension of standard linearization techniques to the 
heterogeneous agent context. However, the size of heterogeneous agent 
models leads to a number of computational challenges which we ad-
dress.

Step 1: Approximate Steady State. Because households face idiosyn-
cratic uncertainty, the  steady- state value function varies over individual 
state variables v(a, z), and there is a nondegenerate stationary distribu-
tion of households g(a, z). To numerically approximate these functions 
we must represent them in a  finite- dimensional way. We use a nonlinear 
approximation in order to retain the rich nonlinearities and heterogene-
ity at the individual level. In principle, any approximation method can 
be used in this step; we use the finite difference methods outlined in 
Achdou et al. (2015) because they are fast, accurate, and robust.

We approximate the value function and distribution over a discretized 
grid of asset holdings a = (a1 = 0, a2, . . . , aI)T. Denote the value function and 
distribution along this discrete grid using the vectors v = (v(a1,zL), . . . , 
v(aI,zH))T and g = (g(a1,zL), . . . , g(aI,zH))T; both v and g are of dimension  
N × 1 where N = 2I is the total number of grid points in the individual 
state space. We solve the  steady- state versions of equations (2) and (3) at 
each point on this grid, approximating the partial derivatives using fi-
nite differences. Achdou et al. (2015) show that if the finite difference 
approximation is chosen correctly, the discretized steady state is the so-
lution to the following system of matrix equations:

 

rv = u v( ) + A v; p( ) v

0 = A v; p( )T g

p = F g( ) .

 (13)
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The first equation is the approximated  steady- state HJB equation (8) 
for each point on the discretized grid, expressed in our vector notation. 
The vector u(v) is the maximized utility function over the grid and the 
matrix multiplication A(v; p)v captures the remaining terms in equa-
tion (8). The second equation is the discretized version of the  steady-  
state Kolmogorov Forward equation (9). The transition matrix A(v; p) 
is simply the transpose of the matrix from the discretized HJB equation 
because it encodes how households move around the individual state 
space. Finally, the third equation defines the prices p = (r, w)T as a func-
tion of aggregate capital through the distribution g.15

Since v and g each have N entries, the total system has 2N + 2 equa-
tions in 2N + 2 unknowns. In simple models like this one, highly accu-
rate solutions can be obtained with as little as N = 200 grid points (i.e., 
I = 100 asset grid points together with the two income states); however, 
in more complicated models, such as the two- asset model in Section V, 
N can easily grow into the tens of thousands. Exploiting the sparsity of 
the transition matrix A(v; p) is necessary to even represent the steady 
state of such large models.

Step 2: Linearize Equilibrium Conditions. The second step of our 
method is to compute a  first- order Taylor expansion of the model’s dis-
cretized equilibrium conditions around steady state. With aggregate 
shocks, the discretized equilibrium is characterized by

 

rvt = u(vt) + A(vt; pt)vt +
1

dt
Etdvt

dgt

dt
= A(vt; pt)Tgt

dZt = −hZtdt + sdWt

pt = F(gt; Zt).

 

(14)

The system (14) is a nonlinear system of 2N + 3 stochastic differential 
equations in 2N + 3 variables (the 2N + 2 variables from the steady state, 
plus aggregate productivity Zt). Shocks to TFP Zt induce fluctuations 
in marginal products and therefore prices pt = F(gt; Zt). Fluctuations in 
prices in turn induce fluctuations in households’ decisions and there-
fore in vt and the transition matrix A(vt; pt).16 Fluctuations in the transi-
tion matrix then induce fluctuations in the distribution of households gt.

The key insight is that this  large- dimensional system of stochastic 
differential equations has exactly the same structure as more standard 
representative agent models that are normally solved by means of lin-
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earization methods. To make this point, the “Fully Recursive Formula-
tion of  Krussell- Smith (1998)” section of the appendix relates the system 
(14) to the real business cycle (RBC) model. The discretized value func-
tion points vt are jump variables, like aggregate consumption Ct in the 
RBC model. The discretized distribution points gt are endogenous state 
variables, like aggregate capital Kt in the RBC model. TFP Zt is an ex-
ogenous state variable. Finally, the wage and real interest rate are stati-
cally defined variables, just as in the Krusell and Smith (1998) model.

As already anticipated, we exploit this analogy and solve the nonlinear 
system (14) by linearizing it around the steady state. Since the dimension 
of the system is large, it is impossible to compute derivatives by hand. 
We use a recently developed technique called automatic (or algorithmic) 
differentiation that is fast and accurate up to machine precision. It domi-
nates finite differences in terms of accuracy and symbolic differentiation 
in terms of speed. Automatic differentiation exploits the fact that the 
computer represents any function as the composition of various elemen-
tary functions such as addition, multiplication, or exponentiation, which 
have known derivatives. It builds the derivative of the original function 
by iteratively applying the chain rule. This allows automatic differentia-
tion to exploit the sparsity of the transition matrix A(vt; pt) when taking 
derivatives, which is essential for numerical feasibility in large models.17

The  first- order Taylor expansion of equation (14) can be written as:18

 Et

dv! t
dg! t
dZt

0

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

Bvv 0 0 Bvp

Bgv Bgg 0 Bgp

0 0 −h 0
0 Bpg BpZ −I

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

v! t
g! t
Zt

p! t

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

dt. (15)

The variables in the system, v!t, g! t, Zt, and p! t, are expressed as deviations 
from their  steady- state values, and the matrix is composed of the de-
rivatives of the equilibrium conditions evaluated at steady state. Since 
the pricing equations are static, the fourth row of this matrix equation 
only has nonzero entries on the  right- hand side.19 It is convenient to 
plug the pricing equations p! t = Bpgg! t + BpZZt into the remaining equa-
tions of the system, yielding

 Et

dv! t
dg! t
dZt

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

Bvv BvpBpg BvpBpZ

Bgv Bgg+BgpBpg BgpBpZ

0 0 −h

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

B
! "######### $#########

v! t
g! t
Zt

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

dt. (16)
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Step 3: Solve Linear System. The final step of our method is to solve the 
linear system of stochastic differential equations (16). Following standard 
practice, we perform a Schur decomposition of the matrix B to identify 
the stable and unstable roots of the system. If the Blanchard and Kahn 
(1980) condition holds, that is, the number of stable roots equals the num-
ber of state variables g! t and Zt, then we can compute the solution:

 

v! t = Dvgg! t + DvZZt,

dg! t
dt

= (Bgg + BgpBpg + BgvDvg)g! t + (BgpBpZ + BgvDvZ)Zt,

dZt = −hZtdt + sdWt,

p! t = Bpgg! t + BpZZt.

 (17)

The first line of equation (17) sets the control variables v! t as functions of 
the state variables g! t and Zt, that is, the matrices Dvg and DvZ character-
ize the optimal decision rules as a function of aggregate states. The sec-
ond line plugs that solution into the system (16) to compute the evolu-
tion of the distribution. The third line is the stochastic process for the 
aggregate productivity shock, and the fourth line is the definition of 
prices p! t.

C.  What Does Linearization Capture and What Does It Lose?

Our method uses a mix of nonlinear approximation with respect to in-
dividual state variables, and linear approximation with respect to ag-
gregate state variables. Concretely, from the first line of equation (17), 
the approximated solution for the value function is of the form

 vt(ai, zj) = v(ai, zj) +
k=1

I

∑
ℓ=1

2

∑Dvg[i, j;k, l](gt(ak, zℓ) − g(ak, zℓ)) + DvZ[i, j]Zt, (18)

where Dvg[i, j; k, l] and DvZ[i, j] denote the relevant elements of Dvg and 
DvZ, and v(a, z) and g(a, z) are the  steady- state value function and distri-
bution. Given the value function vt(ai, zj), optimal consumption at differ-
ent points of the income and wealth distribution is then given by

 ct(ai, zj) = (∂avt(ai, zj))−1/u. (19)

Certainty Equivalence. Expressions (18) and (19) show that our solu-
tion features certainty equivalence with respect to aggregate shocks; the 
standard deviation σ of aggregate TFP Zt does not enter households’ 
decision rules.20 This is a generic feature of all linearization techniques.
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When Inequality Matters for Macro and Macro Matters for Inequality 13

However, our solution does not feature certainty equivalence with 
respect to idiosyncratic shocks because the distribution of idiosyncratic 
shocks enters the HJB equation (2), as well as its linearized counter-
part in equation (16) directly. A corollary of this is that our method does 
capture the effect of aggregate uncertainty to the extent that aggregate 
shocks affect the distribution of idiosyncratic shocks. For example, 
Bloom et al. (2014) and Bayer et al. (2015) study the effect of “uncer-
tainty shocks” that result in an increase in the dispersion of idiosyn-
cratic shocks and can be captured by our method.21

Our solution method may instead be less suitable for various  asset-  
pricing applications in which the direct effect of aggregate uncertainty 
on individual decision rules is key. In future work we hope to en-
compass such applications by extending our  first- order perturbation 
method to higher orders, or by allowing the decision rules to depend 
nonlinearly on relevant low- dimensional aggregate state variables (but 
not the high- dimensional distribution). Yet another strategy could be 
to assume that individuals are averse to ambiguity so that risk premia 
survive linearization (Ilut and Schneider 2014).

Distributional Dependence of Aggregates. A common motivation for 
studying heterogeneous agent models is that the response of macro-
economic aggregates to aggregate shocks may depend on the distribu-
tion of idiosyncratic states. For example, different joint distributions of 
income and wealth g(a, z) can result in different impulse responses of 
aggregates to the same aggregate shock. Our solution method preserves 
such distributional dependence.

To fix ideas, consider the impulse response of aggregate consump-
tion Ct to a productivity shock Zt, starting from the  steady- state distri-
bution g(a, z). First consider the response of initial aggregate consump-
tion C0 only. We compute the impact effect of the shock on the initial 
value function v0(a, z) and initial consumption c0(a, z) from equations 
(18) and (19). Integrate this over households to get aggregate con-
sumption

 C0 = ∫c0(a, z)g(a, z)dadz ≈
i=1

I

∑
j=1

2

∑c0(ai, zj)g(ai, zj)DaDz. 

The impulse response of C0 depends on the initial distribution g0(a, z) 
because the elasticities of individual consumption c0(a, z) with respect 
to the aggregate shock Z0 are different for individuals with different 
levels of income and/or wealth. These individual elasticities are then 
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14 Ahn, Kaplan, Moll, Winberry, and Wolf

aggregated according to the initial distribution. Therefore, the effect of 
the shock depends on the initial distribution g0(a, z).

To see this even more clearly, it is useful to briefly work with the con-
tinuous rather than discretized value and consumption policy func-
tions. Analogous to equation (18), we can write the initial value func-
tion response as v! 0(a, z) = DvZ(a, z)Z0 where DvZ(a, z) are the elements of 
DvZ in (17) and where we have used the fact that the initial distribution 
does not move (i.e., g! 0(a, z) = 0) by virtue of g being a state variable. We 
can use this to show that the deviation of initial consumption from 
steady state satisfies c!0(a, z) = DcZ(a, z)Z0 where DcZ(a, z) captures the 
responsiveness of consumption to the aggregate shock.22 The impulse 
response of initial aggregate consumption is then

 C! 0 = ∫DcZ(a, z)g(a, z)dadz × Z0. (20)

It depends on the  steady- state distribution g(a, z) since the responsive-
ness of individual consumption to the aggregate shock DcZ(a, z) differs 
across (a, z).

Size and Sign Dependence. Another question of interest is whether 
our economy features size or sign dependence, that is, whether it 
responds nonlinearly to aggregate shocks of different sizes or asym-
metrically to positive and negative shocks.23 In contrast to state depen-
dence, our linearization method eliminates any potential sign and size 
dependence. This can again be seen clearly from the impulse response 
of initial aggregate consumption in equation (20), which is linear in 
the aggregate shock Z0. This immediately rules out size and sign de-
pendence in the response of aggregate consumption to the aggregate  
shock.24

In future work, we hope to make progress on relaxing this feature of 
our solution method. Extending our  first- order perturbation method to 
higher orders would again help in this regard. Another idea is to lever-
age the linear model solution together with parts of the full nonlinear 
model to simulate the model in a way that preserves these nonlineari-
ties. In particular, one could use the fully nonlinear Kolmogorov For-
ward equation in (14) instead of the linearized version in equation (16) to 
solve for the path of the distribution for times t > 0: dgt / dt = A(vt; pt)Tgt.  
This procedure allows us to preserve size dependence after the initial 
impact t > 0 because larger shocks potentially induce nonproportional 
movements in the individual state space, and therefore different distri-
butional dynamics going forward.25
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When Inequality Matters for Macro and Macro Matters for Inequality 15

Small versus Large Aggregate Shocks. Another generic feature of lin-
earization techniques is that the linearized solution is expected to be a 
good approximation to the true nonlinear solution for small aggregate 
shocks and less so for large ones. Section II.D documents that our ap-
proximate dynamics of the distribution is accurate for the typical cali-
bration of TFP shocks in the Krusell and Smith (1998) model, but breaks 
down for very large shocks.26

D.  Performance of Linearization in  Krusell- Smith Model

In order to compare the performance of our method to previous work, 
we solve the model under the parameterization of the JEDC compari-
son project (Den Haan et al. 2010). A unit of time is one quarter. We set 
the rate of time preference ρ = 0.01 and the coefficient of relative risk 
aversion θ = 1. Capital depreciates at rate δ = 0.025 per quarter and the 
capital share is α = 0.36. We set the levels of idiosyncratic labor produc-
tivity zL and zH following Den Haan et al. (2010).

One difference between our model and Den Haan et al. (2010) is that we 
assume aggregate productivity follows the  continuous- time,  continuous-  
state  Ornstein- Uhlenbeck process (1) rather than the  discrete- time, two- 
state Markov chain in Den Haan et al. (2010). To remain as consistent 
with Den Haan et al.’s (2010) calibration as possible, we choose the ap-
proximate quarterly persistence corr(log Zt+1, log Zt) = e−h ≈ 1 − h = 0.75

h ≈ 1 − h = 0.75 and the volatility of innovations σ = 0.007 to match the standard 
deviation and autocorrelation of Den Haan et  al.’s (2010) two- state  
process.27

In our approximation we set the size of the individual asset grid I = 
100, ranging from a1 = 0 to aI = 100. Together with the two values for  
idiosyncratic productivity, the total number of grid points is N = 200 
and the total size of the dynamic system (16) is 400.28

Table 1 shows that our linearization method solves the Krusell and 
Smith (1998) model in approximately one- quarter of one second. In 
contrast, the fastest algorithm documented in the comparison project 
by Den Haan (2010) takes over seven minutes to solve the model—
more than 1,500 times slower than our method (see table 2 in Den Haan 
[2010]).29 In Section III, we solve the model in approximately 0.1 sec-
onds using our  model- free reduction method.

Accuracy of Linearization. The key restriction that our method im-
poses is linearity with respect to the aggregate state variables Zt and g! t. 
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16 Ahn, Kaplan, Moll, Winberry, and Wolf

We evaluate the accuracy of this approximation using the error metric 
suggested by Den Haan (2010). The Den Haan error metric compares 
the dynamics of the aggregate capital stock under two simulations of 
the model for T = 10,000 periods. The first simulation computes the 
path of aggregate capital Kt from our linearized solution (17). The sec-
ond simulation computes the path of aggregate capital Kt

∗ from simulat-
ing the model using the nonlinear dynamics (3) as discussed in Section 
II.C. We then compare the maximum log difference between the two 
series,

 ´DH = 100 ×
t∈[0,T]
max log Kt − log Kt

∗ . 

Den Haan originally proposed this metric to compute the accuracy of 
the forecasting rule in the Krusell and Smith (1998) algorithm; in our 
method, the linearized dynamics of the distribution gt are analogous to 
the forecasting rule.

When the standard deviation of productivity shocks is 0.7%, our 
method gives a maximum percentage error εDH = 0.049%, implying that 
households in our model make small errors in forecasting the distribu-
tion. Our method is three times as accurate as the Krusell and Smith 
(1998) method, which is the most accurate algorithm in Den Haan (2010),  
and gives εDH = 0.16%. Table 2 shows that, since our method is locally 

Table 1
Run Time for Solving  Krusell- Smith Model

   Full Model  

Steady state 0.082 sec 
Derivatives 0.021 sec 
Linear system 0.14 sec
Simulate IRF 0.024 sec

 Total  0.27 sec  

Notes: Time to solve  Krusell- Smith model once on Mac-
Book Pro 2016 laptop with 3.3 GHz processor and 16 
GB RAM, using Matlab R2016b and our code toolbox. 
“Steady state” reports time to compute steady state. 
“Derivatives” reports time to compute derivatives of 
discretized equilibrium conditions. “Linear system” 
reports time to solve system of linear differential equa-
tions. “Simulate IRF” reports time to simulate impulse 
responses reported in figure 1. “Total” is the sum of all 
these tasks.
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When Inequality Matters for Macro and Macro Matters for Inequality 17

accurate, its accuracy decreases in the size of the shocks σ. However, 
with the size of aggregate shocks in the baseline calibration, it provides 
exceptional accuracy.

III.  Model Reduction

Solving the linear system (16) is extremely efficient because the Kru-
sell and Smith (1998) model is relatively small. However, the required 
matrix decomposition becomes prohibitively expensive in larger mod-
els like the two- asset model that we will study in Section V. We must 
therefore reduce the size of the system to solve these more general mod-
els. Furthermore, even in smaller models like Krusell and Smith (1998), 
model reduction makes  likelihood- based estimation feasible by reduc-
ing the size of the associated filtering problem.30

In this section, we develop a  model- free reduction method to reduce 
the size of the linear system while preserving accuracy. Our approach 
projects the high- dimensional distribution g! t and value function v! t onto 
low- dimensional subspaces and solves the resulting low- dimensional 
system. The main challenge is reducing the distribution, which we dis-
cuss in Sections III.A, III.B, and III.C. Section III.D describes how we 
reduce the value function. Section III.E puts the two together to solve 
the reduced model and describes the numerical implementation. Fi-
nally, Section III.F shows that our reduction method performs well in 
the Krusell and Smith (1998) model.

In order to simplify notation, for the remainder of this section we use 

Table 2
Maximum Den Haan Error in %

Std. Dev. Productivity Shocks  
(%)  

Maximum Den Haan Error  
(%) 

.01 0.000 

.1 0.001

.7 0.049
1.0 0.118
5.0  3.282

Notes: Maximum percentage error in accuracy check suggested by 
Den Haan (2010). The error is the percentage difference between the 
time series of aggregate capital under our linearized solution and 
a nonlinear simulation of the model, as described in the main text. 
The third row denotes the calibrated value σ = 0.007.
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18 Ahn, Kaplan, Moll, Winberry, and Wolf

vt, gt and pt to denote the deviations from steady state in the value func-
tion, distribution, and prices. In Section II, we had denoted these objects 
using v! t, g! t and p! t. This change of notation applies to Section III only, 
and we will remind the reader whenever this change could cause con-
fusion.

A.  Overview of Distribution Reduction

The basic insight that we exploit is that only a small subset of the infor-
mation in gt is necessary to accurately forecast the path of prices pt. In 
fact, in the discrete- time version of this model, Krusell and Smith (1998) 
show that just the mean of the asset distribution gt is sufficient to fore-
cast pt according to a  forecast- error metric. However, the success of 
their reduction strategy relies on the economic properties of the model, 
so it is not obvious how to generalize it to other environments. We use 
a set of tools from the engineering literature known as model reduction to 
generalize Krusell and Smith’s (1998) insight in a  model- free way, al-
lowing the computer to compute the features of the distribution that are 
necessary to accurately forecast pt.31

It is important to note that the vector pt does not need to literally 
consist of prices; it is simply the vector of objects we wish to accurately 
describe. In practice, we often also include other variables of interest, 
such as aggregate consumption or output, to ensure that the reduced 
model accurately describes their dynamics as well.

The Distribution Reduction Problem

We say that the distribution exactly reduces if there exists a kS- dimensional 
time- invariant subspace S  with kS << N such that, for all distributions 
gt that occur in equilibrium,

 gt = g1tx1 + g2tx2 + ... + gkSt
xkS

, 

where XS = [x1, ..., xkS
] ∈ RN × kS is a basis for the subspace S  and g1t, ..., gkSt

g1t, ..., gkSt
 are scalars. If we knew the time- invariant basis XS, we could decrease 

the dimensionality of the problem by tracking only the kS- dimensional 
vector of coefficients γt.

Typically exact reduction as described above does not hold, so we 
instead must estimate a trial basis X = [x1, ..., xk] ∈ RN × k such that the 
distribution approximately reduces, that is,
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When Inequality Matters for Macro and Macro Matters for Inequality 19

 gt ≈ g1tx1 + g2tx2 + ... + gktxk, 

or, in matrix form, gt ≈ Xgt. Denote the resulting approximation of the 
distribution by g! t = Xgt and the approximate prices by p! t = Bpgg! t + BpZZt

p! t = Bpgg! t + BpZZt.
Our model maps directly into the prototypical problem considered 

by the  model reduction literature if the decision rules are exogenous, 
that is, the matrices Dvg and DvZ in equation (17) are exogenously 
given.32 This case assumes away a crucial part of the economics we are 
interested in studying, but nevertheless has pedagogical use in connect-
ing to the existing literature. In this case, using the second and fourth 
equations of (17) and recalling our convention in this section to drop 
hats from variables, our dynamical system becomes

 
dgt

dt
= Cgggt + CgZZt

pt = Bpggt + BpZZt,

 (21)

where Cgg = Bgg + BgpBpg + BgvDvg and CgZ = BgpBpZ + BgvDvZ. This sys-
tem maps a low- dimensional vector of “inputs” (aggregate produc-
tivity Zt) into a low- dimensional vector of “outputs” (prices pt), in-
termediated through the high- dimensional distribution gt.33 The 
 model reduction literature provides an off- the- shelf set of tools to  
replace the high- dimensional “intermediating variable” gt with a low-  
dimensional approximation γt while preserving the mapping from in-
puts to outputs.

Of course, our economic model is more complicated than this special 
case because the distribution reduction feeds back into agents’ deci-
sions through the endogenous value function vt. It is helpful to restate 
the system with endogenous vt in a form closer to that in the  model-  
reduction literature:

 
Et[dvt]

dgt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
Bvv BvpBpg

Bgv Bgg+BgpBpg

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

vt

gt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dt+
BvpBpZ

BgpBpZ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Ztdt

pt = Bpggt+BpZZt,

 (22)

given the exogenous stochastic process for productivity (4). This sys-
tem still maps the low- dimensional input Zt into the low- dimensional 
output pt. However, the intermediating variables are now both the dis-
tribution gt and the  forward- looking decisions vt.
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20 Ahn, Kaplan, Moll, Winberry, and Wolf

Deriving the Reduced System Given Basis X

Model reduction involves two related tasks: first, given a trial basis X, 
we must compute the dynamics of the reduced system in terms of the 
distribution coefficients γt; and second, we must choose the basis X it-
self. In this subsection, we complete the first step of characterizing the 
reduced system given a basis X, which is substantially easier than the 
second step of choosing the basis. Sections III.B and III.C discuss how 
we choose the basis.

Mathematically, we project the distribution gt onto the subspace 
spanned by the basis X ∈ RN × k. Write the requirement that gt ≈ Xgt as

 gt = Xgt + ´t, (23)

where ´t ∈ RN is a residual. The formulation (23) is a standard linear 
regression in which the distribution gt is the dependent variable, the 
basis vectors X are the independent variables, and the coefficients γt are 
to be estimated.

Just as in ordinary least squares, we can estimate the projection coef-
ficients γt by imposing the orthogonality condition XTεt = 0, giving the 
familiar formula

 gt = (XTX)−1XTgt. (24)

A sensible basis will be orthonormal, so that (XTX)–1 = I, further simpli-
fying equation (24) to γt = XTgt.34 We can compute the evolution of this 
coefficient vector by differentiating equation (24) with respect to time 
and using equation (23) to get

 dgt

dt
= XT dgt

dt
= XTBgvvt + XT(Bgg + BgpBpg)(Xgt + ´t) + XTBgpBpgZt 

 ≈ XTBgvvt + XT(Bgg + BgpBpg)Xgt + XTBgpBpgZt. 

The hope is that the residuals εt are small, and so the last approxima-
tion is good. Assuming this is the case, we have the reduced version of 
equation (22)

  
Et[dvt]

dgt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
Bvv BvpBpgX

XTBgv XT(Bgg + BgpBpg)X

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

vt

gt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dt +

BvpBpZ

XTBgpBpZ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Ztdt,

p! t = BpgXgt + BpZZt.

 (25)

Summing up, assuming we have the basis X, this projection proce-
dure takes us from the system of differential equations involving the  
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N- dimensional vector gt in equation (22) to a system involving only the 
k- dimensional vector γt in equation (25).35

B.  Choosing the Basis X with Exogenous Decision Rules

We now turn to choosing a good basis X. In this section we explain how 
to choose a basis in a model with exogenous decision rules, allowing 
us to use preexisting tools from the model reduction literature. In Sec-
tion III.C we extend the strategy to the case with endogenous decision  
rules.

Mechanically increasing the size of the basis X will improve the ap-
proximation of the distribution gt; in the limit where X spans RN, we 
will not reduce the distribution at all. The goal of the  model reduction 
literature is to provide a good approximation of the mapping from in-
puts Zt to outputs pt with as small a basis X as possible. We operational-
ize the notion of a “good approximation” by matching the impulse re-
sponse function of pt to a shock to Zt up to a specified order k.36

Choosing the Basis in a Simplified Deterministic Model

To transparently motivate our choice of basis X, we begin with a simpli-
fied version of the system (21). In particular, we make two simplifying 
assumptions. First, we assume that there are no aggregate shocks, so 
that Zt = 0 for all t. This allows us to focus on deterministic transition 
paths starting from an exogenously given initial distribution g0; because 
certainty equivalence with respect to aggregate shocks holds in our lin-
ear setting, these transition paths are intimately related to impulse re-
sponses driven by shocks to Zt. Our second simplifying assumption is 
that pt = pt is a scalar. This emphasizes that the price vector we  
are trying to approximate is a low- dimensional object. Under these as-
sumptions, we obtain the following simplified version of the sys-
tem (21)

 
dgt

dt
= Cgggt

pt = bpggt,

 (26)

where bpg is a 1 × N vector. The reduced version of this system is

 
dgt

dt
= XTCggXgt

p! t = bpgXgt,

 (27)
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where p! t denotes the reduced path of prices. Since the system (26) is 
linear, it has a simple solution. The solution of the first equation is 
gt = eCggtg0 where eCggt is a matrix exponential. Hence

 pt = bpge
Cggtg0. (28)

Similarly, we can derive an analogous solution for the reduced prices 
which satisfy equation (27)

 p! t = bpgXe
XTCggXt

g0. (29)

The goal is then to choose X such that pt in equation (28) is “close” to p! t 
in equation (29). The key idea is to choose X such that the kth- order 
Taylor- series approximation of pt in equation (28) around t = 0 exactly 
matches that of p! t in equation (29).

The  Taylor- series approximation of the time path of prices (28) 
around t = 0 is37

 pt ≈ bpg I + Cggt +
1
2

Cgg
2 t2 + … + 1

(k−1)! Cgg
k−1tk−1⎡

⎣⎢
⎤
⎦⎥

g0, (30)

where we have used that eCggt ≈ I + Cggt + (1/2) Cgg
2 t2 + ... . Similarly, 

the  Taylor- series approximation of reduced prices is

 p! t ≈ bpgX I + (XTCggX)t + 1
2

(XTCggX)2t +…+ 1
(k−1)! (XTCggX)k−1tk−1⎡

⎣⎢
⎤
⎦⎥
g0. (31)

We want to choose X so that the first k terms of the two Taylor- series 
expansions are identical. With γ0 = XTg0, this means that we require bpg 
= bpgXXT, bpgCgg = bpgXXTCggXXT, and so on. If γt has the same dimen-
sionality as gt (k = N, i.e., we are not reducing the distribution at all), 
then X has to be orthogonal, that is, XXT = I, and the conclusion trivi-
ally follows. But once we have proper reduction this equality does not 
hold, and the problem of  Taylor- series coefficient matching becomes  
nontrivial. Fortunately, the  model reduction literature gives us a sys-
tematic way for choosing X such that equation (30) matches equation 
(31). This systematic way builds upon what is known as the  order- k 
observability matrix of the system (26):38

 O(bpg, Cgg) :=

bpg

bpgCgg

bpgCgg
2

!
bpgCgg

k−1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

. (32)
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It turns out that if the basis X spans the subspace generated by the 
transpose of the observability matrix O(bpg, Cgg), then the kth- order 
 Taylor- series approximation of reduced prices (31) exactly matches that 
of unreduced prices (30), even though it only uses information on the 
reduced state vector γt. Showing this just requires a few lines of algebra, 
which we present in the appendix section “Deterministic Model.”

To gain some intuition why the observability matrix (32) makes an 
appearance, note that the  Taylor- series approximation (30) can be writ-
ten more compactly using matrix notation as

 pt ≈ 1, t, 1
2 t2, ..., 1

(k−1)! tk−1[ ]O(bpg, Cgg)g0. 

Related, O(bpg, Cgg)gt  is simply the vector of time derivatives of pt, that 
is, !pt, !!pt and so on (see endnote 37).

Choosing the Basis in the Stochastic Model

The deterministic case makes clear that the observability matrix 
O(bpg, Cgg) plays a key role in model reduction. The logic of this simple 
case carries through the stochastic model, but the full derivation is more 
involved and details can be found in the appendix section “Model Re-
duction and Proof of Proposition 1.” Because the model is now stochas-
tic, the correct notion of “matching the path of prices” is to match the 
impulse response function of prices.

Proposition 1. Consider the stochastic model with exogenous decision rules 
(21). Let X be a basis that spans the subspace generated by the observability 
matrix O(bpg, Cgg)T with Cgg = Bgg + Bgpbpg + BgvDvg. Then the impulse re-
sponse function of prices p! t to an aggregate productivity shock Zt in the re-
duced model equals the impulse response function of prices pt in the unreduced 
model up to order k.

Proof. See appendix section “Stochastic Model: Proof of Proposition 1.”
The impulse response function in the stochastic model combines the 

impact effect of an aggregate shock Zt together with the transition back 
to steady state. We do not reduce the exogenous state variable Zt, so the 
reduced model captures the impact effect of a shock exactly. The role of 
the observability matrix is to approximate the transition back to steady 
state analogously to the deterministic case.

Finally, note that in this section we have assumed pt is a scalar to em-
phasize that it is a low- dimensional object. In general pt is an ℓ × 1 vec-
tor. One can extend the argument above to show that the correct basis X 
spans the subspace generated by O(Bpg, Cgg)T for Cgg = Bgg + BgpBpg + 
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BgvDvg where now Bpg is an ℓ × N matrix. Matching  impulse- response 
functions of pt up to order k requires matching ℓk terms in the corre-
sponding  Taylor- series approximation, and hence the observability ma-
trix O(Bpg, Cgg) is now of dimension kg × N , where kg = ℓk < N.

C.  Choosing the Basis X with Endogenous Decision Rules

Section III.B shows that if decision rules Dvg are exogenously given, 
then choosing the basis X to span the subspace generated by O(Bpg, Cgg)T 
guarantees that the impulse response of the reduced price p! t matches 
the unreduced model up to a pre- specified order k. However, when de-
cision rules are endogenous, the choice of basis impacts agents’ deci-
sions and therefore the evolution of the distribution. In this case, the 
results of Section III.B do not apply.

However, the choice of basis in Section III.B was only dictated by the 
concern of efficiently approximating the distribution with as small a ba-
sis as possible; it is always possible to improve accuracy by adding ad-
ditional orthogonal basis vectors. In fact, in the finite limit when k = N, 
any linearly independent basis spans all of RN so the distribution is not 
reduced at all and the reduced model is vacuously accurate. Therefore, 
setting the basis X to the subspace generated by O(Bpg, Bgg + BgpBpg)T, 
that is, ignoring feedback from individuals’ decisions to the distribution 
by effectively setting Dvg = 0, will not be efficient but may still be accu-
rate. In practice, we have found in both the simple Krusell and Smith 
(1998) model and the two- asset model in Section V that this choice leads 
to accurate solutions for high enough order k of the observability matrix.

In cases where choosing the basis to span the subspace O(Bpg, Bgg + BgpBpg)T

O(Bpg, Bgg + BgpBpg)T is not accurate even for as high an order k as numerically fea-
sible, we suggest an iterative procedure. First, we solve the reduced 
model (25) based on the inaccurate basis choice for the subspace 
O(Bpg, Bgg + BgpBpg)T. This yields decision rules Dvγ defining a mapping 
from the reduced distribution γt to the value function. We then use these 
to construct an approximation to the true decision rules Dvg (which map 
the full distribution to the value function), that is, D! vg = DvgXT.39 Next 
we choose a new basis of the subspace generated by O(Bpg, Bgg + Bgg + BgpBpg + Bgv

, Bgg + Bgg + BgpBpg + BgvD! vg)T  and solve the model again based on the new reduc-
tion. If the second reduction gives an accurate solution, we are done; if 
not, we continue the iteration. Although we have no theoretical guaran-
tee that this iteration will converge, in practice we have found that  
it does.

This content downloaded from 128.112.071.153 on May 16, 2018 14:20:33 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



When Inequality Matters for Macro and Macro Matters for Inequality 25

Choosing k and Internal Consistency with Endogenous Decision Rules. 
A key practical step in reducing the distribution is choosing the order of 
the observability matrix k, which determines the size of the basis X. With 
exogenous decision rules, we showed that a basis of order k implies that 
the path of reduced prices p! t matches the k- th order Taylor expansion of 
the path of true prices pt, providing a natural metric for assessing accu-
racy.40 However, this logic does not carry through with endogenous deci-
sion rules, leaving unclear what exactly a basis of order k captures.

In the finite limit when k = N, any linearly independent basis spans 
all of RN so the distribution is not reduced at all and the reduced model 
is vacuously accurate. Hence, a natural procedure is to increase k until 
the dynamics of reduced prices converge. In practice, this convergence 
is often monotonic. However, we cannot prove convergence is always 
monotonic, still leaving open the question of what exactly the reduced 
model captures for a given order k.

We suggest an internal consistency metric to assess the extent to which 
the reduced model satisfies the model’s equilibrium conditions. The 
spirit of our internal consistency check is similar to Krusell and Smith’s 
(1998) R2  forecast- error metric and Den Haan’s (2010) accuracy measure 
discussed in Section II: If agents make decisions based on the price path 
implied by the reduced distribution, but we aggregate those decisions 
against the true full distribution, do the prices generated by the true 
distribution match the forecasts?

Concretely, our internal consistency check consists of three steps. 
First, we compute households’ decisions based on the reduced distribu-
tion, v! t = Dvggt. Second, we use these decisions to simulate the nonlin-
ear dynamics of the full distribution gt*—not the reduced version γt—
and its implied prices pt*  for a given path of aggregate shocks Zt

 pt* = Bpggt* + BpZZt 

 dgt*
dt

= A(v! t, pt*)gt* , 

where A(v! t, pt∗) is the nonlinear transition matrix implied by the deci-
sion rules v! t and price pt* . The third step of our internal accuracy check 
is to assess the extent to which the dynamics of pt*  matches the dynam-
ics implied by the reduced system p! t. If the two paths are close, house-
holds in the reduced model could not significantly improve their fore-
casts by using additional information about the distribution. Once 
again, we compare the maximum log deviation of the two paths
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 ´ =
i

max
t≥0

max log p! it − log pit* , 

where i denotes an entry in the price vector.

Computing the Basis X. Following the discussion above, we choose the 
basis X to span the subspace generated by O(Bpg, Bgg + BgpBpg)T. How-
ever, using O(Bpg, Bgg + BgpBpg)T directly is numerically unstable due to 
approximate multicollinearity; as in standard regression, high- degree 
standard polynomials are nearly collinear due to the fact that, for large 
k, Bpg(Bgg + BgpBpg)k−2 ≈ Bpg(Bgg + BgpBpg)k−1, leaving the necessary pro-
jection of the distribution onto X numerically intractable.

We overcome this challenge by relying on a Krylov subspace method, an 
equivalent but more numerically stable class of methods.41 For any 
N × N  matrix A and N × 1 vector b, the  order- k Krylov subspace is

 Kk(A, b) = span b, Ab, A2b, ..., Ak−1b{ }( ) . 

From this definition it can be seen that the subspace spanned by the 
columns of O(Bpg, Bgg + BgpBpg)T is simply the  order- k Krylov subspace 
generated by (Bgg + BgpBpg)T and Bpg

T , that is, Kk(Bgg
T + Bgp

T Bpg
T , Bpg

T ). There-
fore, the projection of gt on O(Bpg, Bgg + BgpBpg)T  is equivalent to the 
projection of gt onto this Krylov subspace.

There are many methods for projecting onto Krylov subspaces in the 
literature. One important feature of all these methods is that they take 
advantage of the sparsity of the underlying matrices.42 We have found 
that one particular method, deflated block Arnoldi iteration, is a robust 
procedure. Deflated block Arnoldi iteration has two advantages for our 
application. First, it is a stable procedure to orthogonalize the columns 
of the basis X and eliminate the approximate multicollinearity. Second, 
the deflation component handles multicollinearity that can arise even 
with nondeflated block Arnoldi iteration.

D.  Value Function Reduction

After reducing the dimensionality of the distribution gt, we are left with 
a system of dimension N + kg with kg << N (recall kg = ℓ × k where ℓ is 
the number of prices and k is the order of the approximation according 
to which the basis X is chosen). Although this is considerably smaller 
than the original system, which was of size 2N, it is still large because it 
contains N equations for the value function—one for each point in the 
individual state space. In complex models, this leaves the linear system 
too large for matrix decomposition methods to be feasible.43
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We therefore also reduce the dimensionality of the distribution vt. 
Just like in our method for reducing the distribution gt, we project 
the (deviation from steady state of the) value function vt onto a 
 lower- dimensional subspace. As before, an important question is how 
to choose the basis for this projection. We choose it by appealing to the 
theory for approximating smooth functions and approximate vt using 
splines. In most models, the value function is sufficiently smooth that 
a low- dimensional spline provides an accurate approximation. In par-
ticular, any spline approximation can be written as the projection

 vt ≈ Xvnt, 

where Xv is an N × kv matrix defining the spline knot points and νt are 
the kv coefficients at those knot points.44 Given this linear projection the 
coefficients are given by nt = (Xv

TXv)−1Xv
Tvt = Xv

Tvt, where we have used 
that we typically choose an orthonormal Xv so that Xv

TXv = I.
It is worth emphasizing the symmetry with our  distribution- reduction 

method, the projection (23). In order to do so we add a g- subscript to the 
basis in the distribution reduction for the remainder of the paper and 
write equation (23) as gt ≈ Xggt. Hence from now on Xg denotes the 
basis in the reduction of the distribution gt and Xv denotes the basis in 
the reduction of the value function vt. It is also important to note that 
we are approximating the deviation of the value function from its 
 steady- state value, not the value function itself (the reader should recall 
our convention in the present section to drop hat superscripts from vari-
ables that are in deviation from steady state for notational simplicity).

We have found that nonuniformly spaced quadratic splines work well 
for three reasons. First, the nonuniform spacing can be used to place 
more knots in regions of the state space with high curvature, allowing 
for an efficient dimensionality reduction. Second, the quadratic spline 
preserves monotonicity and concavity between knot points, which is 
important in computing  first- order conditions. Third, and related, the 
local nature of splines implies that they avoid creating spurious oscil-
lations at the edges of the state space (Runge’s phenomenon), which 
often occurs with global approximations like high- degree polynomials.

It is also important to note the difference between approximating 
the deviations of the value function from steady state using quadratic 
splines—which we do—versus solving for the  steady- state value using 
quadratic splines—which we do not do. The finite difference method 
we use to compute the steady state does not impose that the value 
function is everywhere differentiable, which is potentially important 
for capturing the effects of nonconvexities. However, after having com-
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puted the  steady- state value functions, it is typically the case that they 
have kinks at a finite number of points and are well approximated by 
smooth functions between these points. It is then straightforward to fit 
quadratic splines between the points of nondifferentiability.

E.  Putting It All Together: A Numerical Toolbox

Summarizing the previous sections, we have projected the distribution 
gt onto the subspace spanned by Xg and the value function vt onto the 
subspace spanned by Xv. Now we simply need to keep track of the kv × 1 
coefficient vector νt for the value function and the kg × 1 coefficient vec-
tor γt for the distribution. Because knowledge of these coefficients is suf-
ficient to reconstruct the full value function and distribution, we will 
also sometimes refer to νt as the  reduced  value function and to γt as the 
reduced distribution. Our original system (16) is now reduced to

 Et

dnt

dgt

dZt

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

Xv
TBvvXv Xv

TBvpBpgXg Xv
TBvpBpZ

Xg
TBgvXv Xg

T(Bgg+BgpBpg)Xg Xg
TBgpBpZ

0 0 −h

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

nt

gt

Zt

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

dt. (33)

We have provided a numerical toolbox implementing the key steps 
in our computational method at the github page associated with this 
project.45 Broadly, the user provides two files: one that solves for the 
steady state and another that evaluates the model’s equilibrium condi-
tions. Our toolbox then implements the following algorithm (we here 
revert back to denoting deviations from steady state with hat super-
scripts):

1. Compute the steady state values of v, g and p.

2. Compute a  first- order Taylor expansion of the equilibrium condi-
tions (14) around steady state using automatic differentiation, yielding 
the system (16) in terms of deviations from steady state v! t, g! t, p! t  and Zt.

3. If necessary, reduce the model, yielding the system (33) in terms of 
(νt, γt, Zt).

(a) Distribution reduction: compute the basis Xg = O(Bpg, Bgg + BgpBpg)T

= O(Bpg, Bgg + BgpBpg)T using deflated Arnoldi iteration and project g! t on Xg to ob-
tain the reduced distribution γt.
(b) Value function reduction: compute the spline basis Xv and project 
v! t on Xv to obtain the reduced value function νt.

4. Solve the system (16) or, if reduced, (33).
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5. Simulate the system to compute impulse responses and time- series 
statistics.

F.  Model Reduction in  Krusell- Smith Model

The Krusell and Smith (1998) model is a useful environment for evalu-
ating our  model- reduction methodology because it is possible to solve 
the full unreduced model as a benchmark. We are able to substantially 
reduce the size of the system: projecting the distribution on an observ-
ability matrix of order k = 1 and approximating the value function at 24 
spline knot points provides an extremely accurate approximation of the 
model’s dynamics.46 Figure 1 shows that the impulse responses of key 

Fig. 1. Impulse responses to TFP shock in  Krusell- Smith model
Note: Impulse responses to an instantaneous positive unit standard deviation size shock 
(Dirac delta function) to aggregate TFP. We simulate the model by discretizing the time 
dimension with step size dt = 0.1. “Full model” refers to model solved without model 
reduction and “reduced model” with reduction, using kg = 2 (forecasting ℓ = 5 objects, of 
which two are linearly independent, with a k = 1- order  Taylor- series approximation) and 
kv = 24.
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aggregate variables in the reduced model are almost exactly identical to 
the full, unreduced model, despite approximating the N = 400 dimen-
sional dynamic system with a 30- dimensional system.47

The fact that we can reduce the distribution with an observability 
matrix of order k = 1 is consistent with Krusell and Smith’s (1998) find-
ing of “approximate aggregation” using a computationally distinct pro-
cedure and accuracy measure. In fact, as figure 2 shows, a k = 1 order 
approximation of the distribution returns precisely the mean. The top 
left panel of the figure plots the basis vector associated with k = 1, split 
into two 100- dimensional vectors corresponding to the two values for 
idiosyncratic productivity. It shows that indeed the first basis vector 
xg,1 = a

a[ ], implying that gt = xg,1
T gt = a

a[ ]T gt = K! t, the (deviation from 
steady state of the) mean of the distribution. The remaining panels plot 

Fig. 2. Basis vectors in distribution reduction
Note: The columns of Xg = O(Bpg, Bgg + BgpBpg)T, here displayed for the capital stock, up 
to order k = 4. These correspond to the basis vectors in the approximated distribution 
gt ≈ g1txg,1 + ... + g4txg,4 .
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the  higher- order elements of Xg, which quickly converge to constants 
that do not add information to the approximation. Hence, our  model-  
free reduction method confirms Krusell and Smith’s (1998) approximate 
aggregation result in this simple model.

With or without dimensionality reduction, our method solves and 
simulates the model in less than 0.3 seconds. Table 3 reports the running 
time of using our Matlab code suite on a desktop PC. Although reduc-
tion is not necessary to solve this simple model, it nevertheless reduces 
running time by more than 50% and takes approximately 0.1 seconds.48 
In the two- asset model in Section V, model reduction is necessary to 
even solve the model.

Our internal consistency check confirms the fact that the distribution 
reduction is accurate; the maximum log deviation is 0.065%, which is 
twice as small as the most accurate algorithm in the JEDC compari-
son (Den Haan 2010). Recall that the maximum log deviation in the 
unreduced model is 0.049%, capturing the error due to linearization. 
Hence, the additional error due to our model reduction is extremely 
small. Figure 3 plots the two series for a random 400- quarter period of 
simulation and shows that the two series are extremely close to each  
other.49

Table 3
Run Time for Solving  Krusell- Smith Model

  Full Model Reduced Model

Steady state 0.082 sec 0.082 sec
Derivatives 0.021 sec 0.021 sec

Dim reduction × 0.007 sec
Linear system 0.14 sec 0.002 sec
Simulate IRF 0.024 sec 0.003 sec
Total  0.267 sec  0.116 sec

Notes: Time to solve  Krusell- Smith model once on MacBook 
Pro 2016 laptop with 3.3 GHz processor and 16 GB RAM, using 
Matlab R2016b and our code toolbox. “Full model” refers to 
solving model without model reduction and “reduced model” 
with reduction, using kg = 1 and kv = 12. “Steady state” reports 
time to compute steady state. “Derivatives” reports time to 
compute derivatives of discretized equilibrium conditions. 
“Dim reduction” reports time to compute both the distribu-
tion and value function reduction. “Linear system” reports  
time to solve system of linear differential equations. “Simulate 
IRF” reports time to simulate impulse responses reported in 
figure 1. “Total” is the sum of all these tasks.
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IV.  Two- Asset Incomplete Markets Model

While the Krusell and Smith (1998) model is a useful pedagogical tool 
for explaining our computational method, it does not reproduce key 
features of the distribution of  household- level income, wealth, and con-
sumption in the microdata. In this section, we apply our method to solve 
a two- asset incomplete markets model in the spirit of Kaplan and Vio-
lante (2014) and Kaplan et al. (2016), which is explicitly parameterized to 
match key features of these distributions. Accurately reproducing these 
features leads to a failure of approximate aggregation, which together 
with the model’s size, render it an ideal setting to illustrate the power of 
our method. In Sections V and VI, we use the model to illustrate a rich 
interaction between inequality and macroeconomic dynamics.

A.  Model

The household side of the model is a simplified version of Kaplan et al. 
(2016), so we refer the interested reader to that paper for full details. 
The firm side follows the standard real business cycle model with ag-
gregate productivity shocks.

Fig. 3. Internal consistency check
Note: Two series for aggregate capital that enter the internal consistency check ε. “Re-
duced model forecast” computes the path K! t implied by the reduced linear model. “Non-
linear model forecast” computes the path Kt* from updating the distribution according to 
the nonlinear KFE (3).
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Environment

Households. There is a unit mass of households indexed by j ∈ [0, 1]. 
At each instant of time, households hold liquid assets bjt, illiquid assets 
ajt, and have labor productivity zjt. Households die with an exogenous 
Poisson intensity ζ and upon death give birth to an offspring with zero 
wealth ajt = bjt = 0 and labor productivity drawn from its ergodic distri-
bution. There are perfect annuity markets, implying that the wealth of 
deceased households is distributed to other households in proportion 
to their asset holdings.50 Each household has preferences over con-
sumption cjt represented by the expected utility function

 E0 0

∞

∫ e−(r+z)t log cjtdt. 

A household with labor productivity zjt earns labor income wtzjt and 
pays a linear income tax at rate τ. Each household also receives a constant 
lump- sum transfer from the government, T. Labor productivity follows a 
 discrete- state Poisson process, taking values from the set zjt ∈ {z1, ..., zJ}. 
Households switch from state z to state ′z  with Poisson intensity lz ′z .

The liquid asset bjt pays a rate of return rtb. Households can borrow in 
liquid assets up to an exogenous limit b. The interest rate on borrowing 
is rtb = rtb + k where κ > 0 is a wedge between borrowing and lending 
rates. Define rtb(bt) to be the  interest- rate function that takes both of these 
cases into account.

The illiquid asset ajt pays a rate of return rta. It is illiquid in the sense 
that households must pay a flow cost χ(djt, ajt) to transfer assets at rate  
djt from the illiquid to the liquid account. The transaction cost function 
is given by51

 x(d, a) = x0 |d| +x1
d
a

x2
a. 

The linear component χ0 > 0 generates inaction in households’ optimal 
deposit decisions. The convex component (χ1 > 0, χ2 > 1) ensures that 
deposit rates d / a are finite, so that households’ asset holdings never 
jump. Scaling the convex term by illiquid assets a ensures that marginal 
transaction costs χd(d, a) are homogeneous of degree zero in the deposit 
rate d / a, which implies that the marginal cost depends on the fraction 
of illiquid assets transacted rather than the raw size of the transaction.

The laws of motion for liquid and illiquid assets are

 
dbjt
dt

= (1 − t)wezjt + T + rtb(bjt)bjt − x(djt, ajt) − cjt − djt 
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dajt
dt

= rtaajt + djt. 

Firms. There is a representative firm with the Cobb- Douglas production 
function

 Yt = eZtKt
aL

1−a
, 

where as before Zt is the logarithm of aggregate productivity, Kt is ag-
gregate capital, and L is aggregate labor supply, which is constant by 
assumption. The logarithm of aggregate productivity again follows the 
 Ornstein- Uhlenbeck process

 dZt = −hZtdt + sdWt, 

where dWt is the innovation to a standard Brownian motion, η is the 
rate of mean reversion, and σ captures the size of innovations.

Government. There is a government that balances its budget each pe-
riod. Since the labor tax rate τ and lump- sum transfer rate T are con-
stant, we assume that government spending Gt adjusts each period to 
satisfy the government budget constraint

 
0

1

∫ twtzjtdj = Gt + 0

1

∫ Tdj. (34)

Government spending Gt is not valued by households.

Asset Market Clearing. The aggregate capital stock is the total amount 
of illiquid assets in the economy,

 Kt =
0

1

∫ ajtdj. 
The market for capital is competitive, so the return on the illiquid asset 
rta is simply the rental rate of capital.

The supply of liquid assets is fixed exogenously at Bt = B*, where B* 
is the  steady- state demand for liquid assets given rb∗ = 0.005 (discussed 
below). For simplicity, we assume that interest payments on the liquid 
assets come from outside the economy.

Equilibrium

The  household- level state variables are illiquid asset holdings a, liquid 
asset holdings b, and labor productivity z. The aggregate state variables 
are aggregate productivity Zt and the  cross- sectional distribution of 
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households over their individual states gt(a, b, z). As in Section II, we 
denote an equilibrium object conditional on a particular realization of 
the aggregate state (gt(a, b, z), Zt) with a subscript t.

Households. The household’s  Hamilton- Jacobi- Bellman equation is 
given by

 

(r + z)vt(a,b,z) =
c,d

max logc

+ ∂bvt(a,b,z)(T + (1 − t)wtez + rtb(b)b − x(d,a) − c − d)

+ ∂avt(a,b,z)(rtaa + d)

+
′z
∑lz ′z (vt(a,b, ′z ) − vt(a,b,z)) +

1
dt
Et[dvt(a,b,z)].

 (35)

The  cross- sectional distribution gt(a, b, z) satisfies the Kolmogorov For-
ward equation

 

dgt(a, b, z)
dt

= − ∂a sta(a, b, z)gt(a, b, z)( ) − ∂b stb(a, b, z)gt(a, b, z)( )

−
′z
∑lz ′z gt(a, b, z) +

′z
∑l ′z zgt(a, b, z)

− zgt(a, b, z) + zd(a)d(b)g∗(z),

 (36)

where sta and stb are the optimal drifts in illiquid and liquid assets im-
plied by equation (35), g*(z) is the ergodic distribution of z, and δ is the 
Dirac delta function with δ(a)δ(b) capturing birth at a = b = 0.

Firms. The equilibrium conditions for the production side are the firm 
optimality conditions, together with the process for aggregate produc-
tivity:

 rta = aeZtKt
a−1L

1−a − d 

 wt = (1 − a)eZtKt
aL

−a
 

 dZt = −hZtdt + sdWt. 

Market Clearing. Capital market clearing is given by

 Kt = ∫agt(a, b, z)dadbdz. 

Liquid asset market clearing is given by
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 B = ∫bgt(a, b, z)dadbdz. 

Given these conditions, as well as the government budget constraint 
(34), the market for output clears by Walras’s law.

B.  Calibration

We calibrate the steady state of the model without aggregate shocks 
to match key features of the  cross- sectional distributions of household 
income and balance sheets. Our calibration closely follows Kaplan et al. 
(2016).

Exogenously Set Parameters. We choose the quarterly death rate ζ = 1 / 
180 so that households live 45 years on average. We set the tax rate τ = 
30% and set the lump- sum transfer T to 10% of  steady- state output. 
Given our labor productivity process, this policy implies that in steady 
state around 35% of households receive a net transfer from the govern-
ment, consistent with the Congressional Budget Office (2013). We inter-
pret borrowing in the liquid asset as unsecured credit and therefore set 
the borrowing limit b at one times average quarterly labor income.

We set the capital share in production α = 0.4 and the annual depre-
ciation rate on capital δ = 0.075. With an equilibrium  steady- state ratio 
of capital to annual output of 3.0 (see below) this implies an annual 
return on illiquid assets ra of 5.8%.

Labor Productivity Shocks. Following Kaplan et al. (2016), we assume 
that the  discrete- state process for labor productivity is a discretized ver-
sion of the following  continuous- state process. The logarithm of idio-
syncratic labor productivity is the sum of two independent components

 log zjt = z1, jt + z2, jt, (37)

where each process follows the jump- drift process

 dzi, jt = −bizi, jtdt + dJi, jt. (38)

Jumps arrive for component i at Poisson arrival rate λi. Conditional on 
a jump, a new log- earnings state zc,it is drawn from a normal distribu-
tion with mean zero and variance s j

2. Between jumps, the process drifts 
toward zero at rate βi.52 The parameters σi govern the size of the shocks, 
the parameters βi govern the persistence of the shocks, and the param-
eters λi govern the frequency of their arrival.

This content downloaded from 128.112.071.153 on May 16, 2018 14:20:33 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



When Inequality Matters for Macro and Macro Matters for Inequality 37

Jump- drift processes of this form are closely related to  discrete- time 
AR(1) processes, with the modification that shocks arrive at random, 
rather than deterministic, dates. Allowing for the random arrival of 
shocks is important for matching the leptokurtic nature of annual in-
come growth rates, which we discuss below. It is also important for 
matching observed household portfolio choices of liquid and illiquid 
assets. If the majority of earnings shocks are transitory and frequent 
(high β, high λ), households would accumulate a buffer stock of liquid 
assets to self- insure. On the other hand, if earnings shocks are persistent 
and infrequent (low β, low λ), households would prefer to save in high- 
return illiquid assets and pay the transaction costs to rebalance their 
portfolio when shocks occur.

Recent work by Guvenen et al. (2015) shows that changes in annual 
labor income are extremely leptokurtic, meaning that most absolute an-
nual income changes are small but a small number are very large. We 
use the extent of this leptokurtosis, together with standard moments on 
the variance of log earnings and log earnings growth rates, to estimate 
the parameters of the earnings process (37) and (38). The moments we 
match, together with the fit of the estimated model, are shown in table 4.

The estimated parameters in table 5 indicate that the two jump- drift 
processes can be broadly interpreted as a transitory and a persistent 
component. The transitory component (j = 1) arrives on average once 
every three years and has a half- life of around one quarter. The persis-
tent component (j = 2) arrives on average once every 38 years and has a 

Table 4
Targeted Labor Income Moments

Moment  Data  
Model  

Estimated  
Model  

Discretized

Variance: Annual log earns 0.70 0.70 0.76
Variance: 1 yr. change 0.23 0.23 0.21
Variance: 5 yr. change 0.46 0.46 0.46
Kurtosis: 1 yr. change 17.8 16.5 17.3
Kurtosis: 5 yr. change 11.6 12.1 10.9
Frac. 1 yr. change < 10% 0.54 0.56 0.64
Frac. 1 yr. change < 20% 0.71 0.67 0.70
Frac. 1 yr. change < 50%  0.86  0.85  0.86

Note: Moments of the earning process targeted in the calibration. “Data” refers to 
SSAA data on male earnings from Guvenen et al. (2015). “Model Estimated” refers to 
the continuous process (37) and (38). “Model Discretized” refers to discrete Poisson 
approximation of the process used in model computation.
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half- life of around 18 years. In the context of an  infinite- horizon model, 
the persistent component can be interpreted as a “career shock.” We 
discretize the continuous process (38) using 10 points for the persistent 
component and 3 points for the transitory component. The fit of the 
discretized process for the targeted moments is shown in table 4.

Adjustment Costs and Discount Factor. The five remaining parameters 
on the household side of the model—the discount rate ρ, the borrow-
ing wedge κ, and the parameters of the adjustment cost function χ0, χ1, 
and χ2—jointly determine the incentives of households to accumulate 
liquid and illiquid assets. We choose these parameters to match five 
moments of household balance sheets from the Survey of Consumer 
Finances 2004: the mean of the illiquid and liquid wealth distributions, 
the fraction of poor hand- to- mouth households (with b = 0 and a = 0),  
the fraction of wealthy hand- to- mouth households (with b = 0 and a > 0),  
and the fraction of households with negative assets. We match mean 
il liquid and liquid wealth so that the model is consistent with the ag-
gregate wealth in the US economy. We match the fraction of hand- to- 
mouth households because these households have higher than average 
marginal propensities to consume. See Kaplan et al. (2016) for details on 
the classification of liquid and illiquid assets.

Table 6 shows that our calibrated model matches these five moments 
well. The implied annual discount rate is 5.8% annually and the an-
nual borrowing wedge is 8.1% annually. Figure 4 plots the calibrated 
adjustment cost function together with the  steady- state distribution of 
quarterly deposits. The transaction cost is less than 1% of the transac-
tion for small transactions and rises to around 10% of the transaction 
for a quarterly transaction that is 2% of illiquid assets. The function 

Table 5
Estimated Labor Income Process

Parameter    
Component  

j = 1  
Component  

j = 2

Arrival rate λj 0.080 0.007
Mean reversion βj 0.761 0.009
Std. deviation of innovations σj  1.74  1.53

Note: Parameters of the income process (37) and (38) estimated to match the moments 
in table 4. The j = 1 component arrives on average once every three years with half- life 
approximately one quarter. The j = 2 component arrives once every 38 years with half- 
life approximately 18 years.
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has a kink at d = 0, which generates a mass of households who neither 
deposit nor withdraw.

The calibrated distributions of liquid and illiquid wealth are dis-
played in figure 5. Approximately 28% are hand- to- mouth households 
(i.e., have zero liquid wealth) and another 14% have negative liquid 
wealth. Roughly two- thirds of the hand- to- mouth households are 
“wealthy hand- to- mouth,” that is, have positive illiquid assets, while 
the remaining one- third are “poor hand- to- mouth, that is, have zero 
illiquid assets. Both distributions are extremely skewed; 3% of house-

Table 6
Targeted Wealth Distribution Moments

  Target  Model

Mean illiquid assets (multiple of annual GDP) 3.000 3.000
Mean liquid assets (multiple of annual GDP) 0.375 0.375
Frac. with b = 0 and a = 0 0.100 0.105
Frac. with b = 0 and a > 0 0.200 0.172
Frac. with b < 0  0.150  0.135

Note: Moments of asset distribution targeted in calibration.
Data source: SCF 2004. Liquid assets are revolving consumer debt, deposits, cor-
porate bonds, and government bonds. Illiquid assets are net housing, net du-
rables, corporate equity, and private equity.

Fig. 4. Calibrated adjustment cost function
Note: Solid line plots adjustment costs as a fraction of the amount being transacted d,  
χ(d, a)/d, where x(d, a) = x0 d + x1 d/a x2 a. Histogram displays the  steady- state distribu-
tion of deposit rates d/a.
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holds have more than $2,000,000 in illiquid assets and the top 10% hold 
85% of total illiquid wealth in the economy.

The presence of hand- to- mouth households generates a distribution of 
marginal propensities to consume in line with empirical evidence. The 
average quarterly MPC out of a $500 cash windfall is 22.5%, in line with 
the empirical estimates of Johnson et al. (2006) and Parker et al. (2013). 
The average number is composed of high MPCs for hand- to- mouth 
households (around 0.4) and small MPCs for non- hand- to- mouth house-
holds. This bimodality can be seen in figure 6, panel (a), and is consistent 
with recent work by Fagereng et al. (2016).53 Figure 6, panel (b), shows 
that only households with zero (or very negative) liquid wealth have 
substantial MPCs, even for households with positive illiquid assets.

Fig. 5. Liquid and illiquid wealth distribution in steady state; panel (a) liquid assets b, 
panel (b) illiquid assets a.
Note:  Steady- state distributions of liquid and illiquid wealth in the calibrated model.

a

b
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Fig. 6. Heterogeneity in MPCs across households; panel (a) distribution in steady 
state, panel (b) MPC function.
Note: Quarterly MPCs out of a $500 windfall in steady state. The MPC over a period τ is 
MPCt(a, b, z) = ∂Ct(a, b, z) / ∂b, where Ct(a, b, z) = E[∫0

t c(at, bt, zt)dt| a0 = a, b0 = b, z0 = z].

a

b
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Aggregate Shocks. As in Section II, we set the rate of mean reversion of 
aggregate productivity shocks ε to ensure that their quarterly autocor-
relation e−h ≈ 1 − h = 0.75, and we set the volatility of innovations σ = 
0.007.

C.  Performance of Computational Method

Our discretization of the individual state space (a, b, z) contains N = 
60,000 points, implying that the total unreduced dynamic system con-
tains more than 120,000 equations in 120,000 variables.54 We reduce the 
value function v! t using the spline approximation discussed in Section 
III.D, bringing the size of the value function down from N = 60,000 
gridpoints to kv = 2,145 knot points.

Failure of Approximate Aggregation. We reduce the distribution g! t us-
ing a k = 300 order observability matrix to form the basis X. In the finite 
limit where k is equal to the size of the unreduced state space, the reduced 
model converges to the true unreduced model. Figure 7 shows that the 
impulse responses of the three prices in the model—the liquid return, the 
illiquid return, and the wage—appear to have converged by k = 300.

The fact that the distribution reduction step requires k > 1 suggests 
that “approximate aggregation” does not hold in the two- asset model.55 

Fig. 7. Impulse responses for different orders of distribution reduction
Notes: Impulse responses to an instantaneous positive unit standard deviation size shock 
(Dirac delta function) to aggregate TFP. Note that “k = 2” corresponds to distribution 
reduction based on an order 2 observability matrix, “k = 300” corresponds to distribution 
reduction based on an order 300 observability matrix, and “k = 325” corresponds to dis-
tribution reduction based on an order 325 observability matrix. We simulate the model by 
discretizing the time dimension with step size dt = 0.1.
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Figure 7 shows that using k = 2 provides a poor approximation of the 
model’s dynamics, particularly for the liquid return rtb. This result sug-
gests that approximating the distribution with a small number of mo-
ments using Krusell and Smith’s (1998) procedure would be infeasible 
in this model.56

There are two main reasons why approximate aggregation does not 
hold in the two- asset model. First, recall that the reason for approximate 
aggregation in the Krusell and Smith (1998) model is that consumption 
functions are approximately linear in wealth, except for hand- to- mouth 
households near the borrowing constraint. However, in the one- asset 
model these households do not contribute very much to the aggregate 
capital stock (by virtue of holding very little capital) and hence their 
consumption dynamics are not important for the dynamics of aggre-
gate capital. In contrast, in the two- asset model, there are a substantial 
number of wealthy hand- to- mouth households who have both highly 
nonlinear consumption functions (by virtue of holding very little liquid 
wealth) and constitute a nontrivial contribution to the dynamics of ag-
gregate capital (by virtue of holding substantial quantities of illiquid 
wealth).

Consistent with this intuition, the basis X of our distribution reduc-
tion places weight on regions of the state space that have a significant 

Fig. 8. Basis vectors for approximating distribution in two- asset model
Note: Columns of the observability matrix O(Bpg, Bgg + BgpBpg)T  corresponding to aggre-
gate capital Kt. The four panels plot the first four columns of the observability matrix over 
liquid and illiquid assets conditional on the median realization of labor productivity z.
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fraction of hand- to- mouth households. Figure 8 plots the first four 
column vectors of the observability matrix associated with forecasting 
the aggregate capital stock Kt.57 Each panel plots a given column of the 
matrix over liquid and illiquid assets, conditional on the median real-
ization of labor productivity z. The first column captures exactly the 
mean of the illiquid asset distribution, which corresponds to aggregate 
capital. The next three columns focus on regions of the state space in 
which households have low liquid assets—and so are hand- to- mouth 
households—as well as high illiquid assets—and so contribute sub-
stantially to aggregate capital.

The second reason why approximate aggregation breaks down in the 
two- asset model is that households must track the liquid return rtb in 
addition to the aggregate capital stock Kt.58 The dynamics of rtb feature 
stronger distributional dependence than the dynamics of Kt because the 
liquid asset is in fixed supply B*; an increase in savings in one region of 
the state space must be met with a decrease in savings elsewhere in the 
state space. Indeed, figure 7 shows that the liquid return is the most 
poorly approximated variable in a k = 2 order approximation.59

Run Time. Our numerical toolbox solves and simulates the two- asset 
model in 4 minutes, 46 seconds. Table 7 decomposes the total run time 
into various tasks and shows that over two- thirds of the time is spent in 
the  model- reduction step. In order to illustrate how the method scales 
with k, table 7 also reports the run time for a smaller k = 150 order ob-
servability matrix. With this smaller approximation of the distribution, 
the total run time falls to 2 minutes, 28 seconds.

D.  Impulse Response to TFP Shock Zt

Figure 9 plots the impulse responses of aggregate output and con-
sumption to a positive aggregate productivity shock Zt. Higher produc-
tivity directly increases output Yt through the production function. It 
also increases the return on capital rta , which encourages capital accu-
mulation and further increases output over time. The marginal product 
of labor also rises, increasing the real wage wt. Both of these price in-
creases lead to an increase in household income.

The increase in household income has differential effects on the con-
sumption of hand- to- mouth and non- hand- to- mouth households. Non- 
hand- to- mouth households respond primarily to the change in their 
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Table 7
Run Time for Solving Two- Asset Model

  k = 300  k = 150

Steady state 56.64 sec 56.64 sec
Derivatives 13.97 sec 13.97 sec
Dim reduction 199.71 sec 67.48 sec
Linear system 12.89 sec 7.70 sec
Simulate IRF 3.03 sec 2.31 sec
Total  286.24 sec 148.10 sec

Notes: Time to solve the two- asset model on a Mac-
Book Pro 2016 laptop with 3.3 GHz processor and 16 
GB RAM, using Matlab R2016b and our code tool-
box; k refers to order of the observability matrix used 
to compute basis X. “Steady state” reports time to 
compute steady state. “Derivatives” reports time to 
compute derivatives of discretized equilibrium condi-
tions. “Dim reduction” reports time to compute both 
the distribution and value function reduction. “Linear 
system” reports time to solve system of linear differen-
tial equations. “Simulate IRF” reports time to simulate 
impulse responses reported. “Total” is the sum of all 
these tasks.

Fig. 9. Aggregate impulse responses to aggregate productivity shock Zt

Notes: Impulse responses to an instantaneous positive unit standard deviation size shock 
(Dirac delta function) to aggregate TFP. “Two- asset” refers to the two- asset model de-
veloped in Section IV.A. “Representative agent” refers to the representative agent ver-
sion of the model, in which the households are replaced by a representative household 
who can only save in aggregate capital; see appendix section “Representative Agent and 
 Spender- Saver Models” for details. We simulate the model by discretizing the time di-
mension with step size dt = 0.1 using an implicit updating scheme.
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permanent income. The change in permanent income is relatively small 
(because the productivity shock Zt is transitory) but is persistent (be-
cause of the dynamics of the capital stock). In contrast, hand- to- mouth 
households respond primarily to the change in their current income. The 
change in current income is larger than the change in permanent in-
come and is less persistent. Consistent with this logic, figure 10 shows 
that the consumption of the hand- to- mouth households responds twice 
as much as average consumption upon impact, but dies out more 
quickly. Due to the presence of these hand- to- mouth households, the 
impulse response of aggregate consumption to a productivity shock is 
very different in the two- asset model compared with a representative 
agent model.

Fig. 10. Consumption response by hand- to- mouth status
Notes: Impulse responses to an instantaneous positive unit standard deviation size shock 
(Dirac delta function) to aggregate TFP. “Wealthy hand- to- mouth” refers to households 
with b = 0 and a > 0. “Poor hand- to- mouth” refers to households with b = 0 and a = 0. 
“Average consumption” is aggregate consumption. “Non- hand- to- mouth” is computed 
as the residual. We simulate the model by discretizing the time dimension with step size 
dt = 0.1 using an implicit updating scheme.
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V.  Aggregate Consumption Dynamics in Two- Asset Model

In this section, we use the two- asset model developed in Section IV to 
illustrate how inequality shapes the dynamics of macroeconomic aggre-
gates. Specifically, we show that although the model is parameterized 
to match  household- level data, it also matches key features of the joint 
dynamics of aggregate consumption and income.

A.  Model with Growth Rate Shocks

Following a long line of work in the consumption dynamics literature, 
such as Campbell and Mankiw (1989), we compare the predictions of 
our model to data on aggregate consumption and aggregate income 
growth. However, the  Ornstein- Uhlenbeck process for aggregate pro-
ductivity we have been working with so far implies that aggregate in-
come growth is negatively autocorrelated, which is at odds with the 
data. Therefore, we modify the shock process so that aggregate produc-
tivity growth, rather than the level, follows an  Ornstein- Uhlenbeck pro-
cess. In addition, we assume that the liquid interest rate rtb is fixed at its 
 steady- state value rb∗ = 0.005 and that the  liquid- asset supply adjusts 
perfectly elastically at this price, as in a small open econonomy. This 
simplifying assumption ensures that the only time- varying interest rate 
is the return on capital, making the comparison with representative 
agent models more transparent. Both of these modifications apply to 
this section only.

Production and Aggregate Shock Process. The production function 
with growth rate shocks is

 Yt = Kt
a QtL( )1−a

, 

where Qt is aggregate productivity. Aggregate productivity growth fol-
lows the process

 d logQt = Ztdt 

 dZt = −hZtdt + sdWt, 

where dWt is an innovation to a standard Brownian motion. Hence, ag-
gregate productivity growth is subject to the  Ornstein- Uhlenbeck pro-
cess Zt.
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Given the other calibrated parameters from Section IV, we choose 
the parameters of the TFP growth process Zt so that equilibrium dy-
namics of aggregate income growth ΔlogYt match two key features of 
the data: the standard deviation of income growth σ(ΔlogYt) and the 
 second- order autocorrelation of income growth Corr(ΔlogYt, ΔlogYt–2).60 
These moments in the data and the model’s fit are reported in table 8.

Model Computation. Many equilibrium objects in the model are non-
stationary due to the nonstationarity of aggregate productivity Qt. We 
cannot directly apply our computational methodology in this setting, 
which relies on approximating the model’s dynamics around a station-
ary equilibrium. Therefore, we detrend the model to express the equi-
librium in terms of stationary objects; for details, see the appendix sec-
tion “Detrending the Nonstationary Model.”

B.  Comparison to the Data

We focus our analysis on two sets of facts about the joint dynamics 
of aggregate consumption and income. The first set of facts, known  
as sensitivity, describes how aggregate consumption growth co- moves 
with predictable changes in aggregate income growth. The second set of 
facts, known as smoothness, refers to the extent of the time- series varia-
tion in aggregate consumption growth.

Sensitivity. We present several measures of sensitivity in the top panel 
of table 9. These measures all compute how predictable changes in in-
come pass through to changes in consumption, but differ in two key 
respects. The first two measures of sensitivity are coefficients from 
ordinary least squares regressions, whereas the second two measures 
are coefficients from instrumental variables regressions. The second 
and fourth measures include real interest rates in the conditioning set, 

Table 8
Targeted Moments of Real GDP Growth

  Data  Model

σ(ΔlogYt) 0.89 0.89
Corr(ΔlogYt, ΔlogYt–2) 0.21  0.20

Note: Targeted moments of per capita real GDP growth,  
1953:Q1—2016:Q2.

This content downloaded from 128.112.071.153 on May 16, 2018 14:20:33 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



When Inequality Matters for Macro and Macro Matters for Inequality 49

whereas the first and third measures do not. We present this range of 
measures to represent the range of approaches in the existing literature.

We measure aggregate income growth as the quarterly change in log 
real GDP per capita during the period 1953:Q1 to 2016:Q2. We mea-
sure aggregate consumption growth as the quarterly change in log real 
nondurables plus durable services consumption per capita during the 
same period. Finally, we measure the real interest rate as the real return 
on 90- day Treasury bills, adjusted for realized inflation.

In the data, all measures of sensitivity indicate that a substantial 
portion of aggregate income growth passes through to consumption 
growth. Consistent with the arguments in Campbell and Mankiw (1989) 
and Ludvigson and Michaelides (2001), among others, the representa-

Table 9
Joint Dynamics of Consumption and Income

Models

  Data  Two- Asset  Rep Agent  Sp- Sa

Sensitivity to Income
D log Ct = b0 + b1D logYt−2 + ´t 0.12 0.14 0.12 0.16

(0.03)
D log Ct = b0 + b1D logYt−2 + b2rt−2 + ´t 0.12 0.09 0.04 0.11

(0.03)
IV(D log Ct on D logYt | D logYt−2) 0.55 0.70 0.54 0.78

(0.15)
Campbell- Mankiw IV 0.49 0.40 0.004 0.50

(0.15) (calibrated)

Smoothness
σ(ΔlogCt)/σ(ΔlogYt) 0.52 0.70 0.80 0.70
Corr(ΔlogCt, ΔlogCt–2)  0.33  0.24  0.16  0.27

Notes: Measures of sensitivity of aggregate consumption to income and the smoothness 
of aggregate consumption. In the data, aggregate consumption Ct is measured as the sum 
of real nondurable plus durable services, per capita, and aggregate income Yt is real GDP 
per capita. Both series are quarterly 1953:Q1–2016:Q2. “Rep agent” refers to the represen-
tative agent model described in the appendix section “Representative Agent and 
 Spender- Saver Models.” “Two- asset” refers to the full two- asset model. “Sp- Sa” refers to 
the  spender- saver model described in the appendix section “Representative Agent and 
 Spender- Saver Models.” “D log Ct = b0 + b1D logYt−2 + ´t” refers to β1 in the regression. 
“D log Ct = b0 + b1D logYt−2 + b2rt−2 + ´t” refers to the coefficient β1 in the regression. 
“IV(D log Ct on D logYt | D logYt−2)” refers to β1 in the instrumental variables regression 
D log Ct = b0 + b1D logYt + ´t, using D logYt−2  to instrument for D logYt. “Campbell- 
Mankiw IV” refers to the β1 in the instrumental variables regression D log Ct = b0 + b1D logYt + b2rt

D log Ct = b0 + b1D logYt + b2rt + ´t, using D logYt−2 , D logYt−3, D logYt−4, rt–2, rt–3, and rt–4 to instrument 
for the  right- hand side. We time- aggregate our continuous time model to the quarterly 
frequency by computing the simple average within a quarter.
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tive agent model generates too little sensitivity once we condition on 
the real interest rate.61 In contrast, the two- asset heterogeneous agent 
model generates substantial sensitivity of consumption growth to pre-
dictable changes in income growth.

Sensitivity in the two- asset model is driven by the presence of hand- 
to- mouth consumers who do not smooth their consumption over time. 
In the representative agent model, consumption jumps upon impact of 
the growth shock Zt because permanent income immediately jumps to 
a new level. However, in the two- asset model, consumption of hand- 
to- mouth households jumps less upon impact—because the change in 
current income is smaller than the change in permanent income—but is 
more persistent. The persistence generates autocorrelation in consump-
tion that allows the model to match the fact that consumption responds 
even to predictable changes in income.

Table 9 also reports the predictions of a simple  spender- saver model in 
the spirit of Campbell and Mankiw (1989). It extends the representative 
agent model to include an exogenous fraction λ of households who are 
permanently hand- to- mouth. We calibrate the fraction of spenders λ to 
match the  Campbell- Mankiw IV measure of consumption sensitivity. This 
 reverse- engineered model is also consistent with the degree of sensitivity 
in the data by construction. In contrast, our two- asset model has only been 
parameterized to match microlevel behavior, not aggregate sensitivity.

Smoothness. We present two measures of smoothness in the bottom 
panel of table 9. The first is the standard deviation of consumption 
growth relative to the standard deviation of income growth. In the data, 
consumption growth is about half as volatile as income growth. The 
second measure of smoothness is the  second- order autocorrelation of 
consumption growth.

The two- asset heterogeneous agent model, the representative agent 
model, and the  spender- saver model all overpredict the volatility of 
consumption growth relative to income growth. Consistent with the 
degree of sensitivity discussed above, both the two- asset model and the 
 spender- saver model generate significant autocorrelation of consump-
tion growth.

VI.  Business Cycle Dynamics of Inequality

The previous section explored how inequality shapes the joint dynam-
ics of aggregate consumption and income. In this section, we briefly 

This content downloaded from 128.112.071.153 on May 16, 2018 14:20:33 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



When Inequality Matters for Macro and Macro Matters for Inequality 51

explore how aggregate shocks themselves shape the dynamics of in-
equality across households. However, with the Cobb- Douglas produc-
tion function we have used so far, the distribution of labor income is 
given exogenously by the distribution of labor productivity shocks z.  
Therefore, we first extend the production side of the economy to include  
high-  and low- skill workers, which are not perfect substitutes with each 
other or with capital. We then explore the effects of shock to the pro-
ductivity of unskilled labor, and a shock to the productivity of capital. 
By construction, this shock has differential effects across workers, gen-
erating substantial movements in income and consumption inequality. 
In addition, the resulting dynamics of aggregate variables are different 
from the representative agent counterpart of the model.

A.  Model with Imperfect Substitutability among Workers

Following Krusell et al. (2000), we modify the production function to 
feature two types of workers and  capital- skill complementarity.

Production Structure. The production function is

 Yt = m(Zt
UUt)s + (1 − m) l(Zt

KKt)r + (1 − l)St
r( )

s

r
⎡
⎣⎢

⎤
⎦⎥

1
s

, (39)

where Zt
U is an unskilled  labor- specific productivity shock, Zt

K  is 
 capital- specific productivity shock, Ut is the amount of unskilled labor, 
and St is the amount of skilled labor (all described in more detail be-
low). The elasticity of substitution between unskilled labor and capital, 
which is equal to the elasticity between unskilled and skilled labor, is 1/
(1 – σ). The elasticity of substitution between skilled labor and capital is 
1/(1 – ρ). If, as in our calibration, σ > ρ, high- skill workers are comple-
mentary with capital.62

We posit a simple mapping from labor productivity z into skill. Recall 
that we modeled the logarithm of labor productivity as the sum of two 
components, log z = z1 + z2. We estimated that z1 is a transitory compo-
nent and z2 is a persistent component. With our estimated parameters, 
shocks to the persistent component arrive on average once every 38 
years. Hence, a natural interpretation of the persistent component in 
an  infinite- horizon model is a “career shock.” We therefore map work-
ers into skills based on the realization of the persistent component— 
we label the top 50% of workers as high- skill and the bottom 50% as 
low- skill.
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We assume that both aggregate productivity shocks follow the  Ornstein-  
Uhlenbeck process

 d log Zt
U = −hU log Zt

Udt + sUdWt
U 

 d log Zt
K = −hK log Zt

Kdt + sKdWt
K. 

where ηU and ηK control the rate of mean reversion and σU and σK con-
trol the size of innovations.

Calibration. We set the elasticities of substitution in production to the 
estimated values in Krusell et al. (2000): σ = 0.401 and ρ = –.495. Since  
σ > ρ, the production function features  capital- skill complementarity, that  
is,  capital- specific productivity shocks disproportionately favor skilled 
labor.

Given the values for these elasticities, and all the other calibrated param-
eters from Section IV.B, we choose the factor shares μ and λ to match two 
 steady- state targets. First, we target a  steady- state labor share of 60%, as in 
Section IV.B. Second, we target a  steady- state skill premium—the ratio of 
the average skilled worker’s earnings to the average unskilled worker’s 
earnings—of 1.97, which is the value of the college skill premium reported 
in Acemoglu and Autor (2011). This yields μ = 0.52 and λ = 0.86.

We set the process for the  unskilled- labor productivity shock to be 
equivalent to our  factor- neutral productivity shock process in the case 
of Cobb- Douglas production. Therefore, as in Section IV.B, we set the 
rate of mean reversion to ηU = 0.25. We set the standard deviation of in-
novations σU so that they generate the same impact effect on output as 
the  factor- neutral shocks in Section IV.B.

B.  Inequality Dynamics Following Unskilled Labor- Specific Shock

Figure 11 plots the impulse responses of key features of the distribution 
of income across households. The wage rate of unskilled workers falls 
fives times more than the wage rate of skilled workers, due to the fact  
that the shock directly affects the marginal product of unskilled work-
ers and these workers are not perfect substitutes for skilled workers. 
Hence, the dispersion of pretax labor income across households increases 
by nearly 0.2% and the 90–10 percentile ratio increases by nearly 1%.63

Figure 12 plots the impulse responses of features of the distribution 
of consumption across workers. The average consumption of low- skill 
workers falls more than twice the amount of high- skill workers. This 
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differential effect reflects the combination of two forces. First, the shock 
decreases unskilled workers’ wages more than skilled workers, so the 
permanent income of unskilled workers is lower. Second, unskilled 
workers are over 30% more likely to be hand- to- mouth, making them 
more sensitive to changes in income.

C.  Aggregate Dynamics Following  Unskilled- Labor Specific Shock

Figure 13 plots the impulse responses of aggregate output and con-
sumption following the  unskilled- specific shock, and compares the re-
sponses to the representative agent version of the model. Although the 

Fig. 11. Impulse responses to unskilled  labor- specific productivity shock
Notes: Impulse responses to an instantaneous positive unit standard deviation size 
shock (Dirac delta function) to unskilled  labor- specific productivity. “Unskilled wage” 
is the wage rate per efficiency unit of labor for unskilled workers. “Skilled wage” is the 
wage rate per efficiency unit of labor for skilled workers. “Log income dispersion” is the 
 cross- sectional standard deviation of log pretax labor income across households. “90- 10 
Ratio” is the ratio of the 90th percentile of pretax labor income to the 10th percentile. We 
simulate the model by discretizing the time dimension with step size dt = 0.1 using an 
implicit updating scheme.
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Fig. 13. Impulse responses to unskilled  labor- specific productivity shock
Notes: Impulse responses to an instantaneous negative unit standard deviation size shock 
(Dirac delta function) to unskilled  labor- specific productivity. “Two- asset” refers to the 
two- asset model. “Rep agent” refers to the representative agent version of the model, 
described in the appendix section “Representative Agent and  Spender- Saver Models.” 
We simulate the model by discretizing the time dimension with step size dt = 0.1 using 
an implicit updating scheme.

Fig. 12. Impulse responses to unskilled  labor- specific productivity shock
Notes: Impulse responses to an instantaneous negative unit standard deviation size shock 
(Dirac delta function) to unskilled  labor- specific productivity. “Unskilled” is the aver-
age consumption of unskilled workers. “Skilled” is the average consumption of skilled 
workers. “Average” is aggregate consumption. “Log consumption dispersion” is the 
 cross- sectional standard deviation of log consumption across households. We simulate 
the model by discretizing the time dimension with step size dt = 0.1 using an implicit 
updating scheme.
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output responses are very similar across the two models, the trough in 
consumption is more than twice as low in the two- asset model than in 
the representative agent model.

The severity of the consumption response in the two- asset model re-
flects the combination of two forces. First, the two- asset model features 
a substantial fraction of hand- to- mouth households that respond more 
strongly to income changes than the representative household. The 
presence of hand- to- mouth households also changes the consumption  
response to factor- neutral shocks, as discussed in Section IV. Second, the 
unskilled  labor- specific shock is concentrated among low- skill workers 
who are more likely to be hand- to- mouth. This concentration is absent 
in the  factor- neutral shock case, and in that case, the difference between 
the two- asset and representative agent models is 25% smaller. Hence, 
the fact that the unskilled  labor- specific shock is concentrated among 
a particular region of the distribution shapes aggregate business cycle 
dynamics of the model.

D.  Inequality Dynamics Following  Capital- Specific Shock

We close this section with a brief example to show that, due to 
 capital- specific complementarity, a shock to  capital- specific productiv-
ity Zt

K  can generate dynamics of income inequality. We set the rate of 
mean reversion ηK = 0.25 and calibrate the standard deviation of inno-
vations σK so that it generates the same impact effect on output as the 
 factor- neutral shocks in Section IV.B.

Figure 14 shows that the capital shock increases labor income in-
equality. The left panel shows that high- skill wages increase by more 
than low- skill wages due to  capital- skill complementarity; in response 
to the  capital- specific shock, the representative firm substitutes toward 
skilled labor. Hence, the dispersion of labor income across households 
increases as well.

VII.  Conclusion

Our paper’s main message is that two of the most common excuses that 
macroeconomists make for employing representative agent models are 
less valid than commonly thought. First, we develop an efficient and 
easy- to- use computational method for solving a wide class of general 
equilibrium heterogeneous agent macro models with aggregate shocks, 
thereby invalidating the excuse that these models are subject to extreme  
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computational difficulties. Second, our results in Sections V and VI 
show that inequality may matter greatly for the dynamics of standard 
macroeconomic aggregates. These results invalidate the excuse that het-
erogeneous agent models are unnecessarily complicated because they 
generate only limited additional explanatory power for aggregate phe-
nomena.

Due to its speed, our method opens up the door to estimating macro-
economic models in which distributions play an important role with 
microdata. Existing attempts to bring macroeconomic models to the 
data typically use either only aggregate time series to discipline ag-
gregate dynamics (in the case of representative agent models), or they 
use  cross- sectional microdata at a given point in time to discipline a 
stationary equilibrium without aggregate shocks (in the case of hetero-
geneous agent models). Instead, future research should use microdata 
capturing distributional dynamics over time, that is, panel data or repeated 
cross sections. An important hurdle in this endeavor is that microdata, 
especially from surveys, are often inconsistent with national accounts 
data on macroeconomic aggregates (see, e.g., Deaton 2005). Attempts to  
produce time series on distributional variables that capture 100% of na-
tional income like the Distributional National Accounts of Piketty, Saez, 
and Zucman (2016) are welcome in this regard.

Fig. 14. Impulse responses to  capital- specific productivity shock
Notes: Impulse responses to an instantaneous positive unit standard deviation size shock 
(Dirac delta function) to  capital- specific productivity. “Unskilled wage” is the wage rate 
per efficiency unit of labor for unskilled workers. “Skilled wage” is the wage rate per ef-
ficiency unit of labor for skilled workers. “Log income dispersion” is the  cross- sectional 
standard deviation of log pretax labor income across households. We simulate the model 
by discretizing the time dimension with step size dt = 0.1 using an implicit updating 
scheme.
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Appendix

Fully Recursive Formulation of  Krusell- Smith (1998)

When writing the equilibrium conditions (2) to (7), we used recursive nota-
tion with respect to the idiosyncratic states (a, z), but time- dependent nota-
tion with respect to the aggregate states (g, Z). For completeness, this appen-
dix shows how to write the corresponding equations using fully recursive 
notation, and how to obtain the  hybrid- notation conditions in the main text 
from the equations using fully recursive notation. In mathematics terminol-
ogy, the problem we study is a Mean Field Game (MFG). The fully recur-
sive version is what Cardaliaguet et al. (2015) term the “Master equation 
for Mean Field Games with common noise” whereas the hybrid-notation 
system (2) to (7) corresponds to their “MFG system with common noise.”

To this end, define the wage and interest rate as functions of the state 
variables (g, Z)

 w(g, Z) = (1 − a)eZK(g)a, (A1)

 r(g, Z) = aeZK(g)a−1 − d, (A2)

 where K(g) = ∫ag(a, z)dadz (A3)

is the aggregate capital stock as a function of the distribution and where 
the normalize aggregate labor supply to one. Furthermore, define the 
“Kolmogorov Forward operator” KZ  that operates on distributions g as

 (KZg)(a, z) := − ∂a[s(a, z, g, Z)g(a, z)] − lzg(a, z) + l ′z g(a, ′z ) 

where s(a, z, g, Z) is the  optimal saving policy function (determined 
below). This operator maps distribution functions g into time deriva-
tives of that distribution. Using this tool one can, for example, write the 
Kolmogorov Forward equation (3) compactly as

 dgt(a, z)
dt

= (KZgt)(a, z). 

With this machinery in hand, the fully recursive,  infinite- dimensional 
HJB equation is:

 

rV(a, z, g, Z) =
c

max u(c) + ∂aV(a, z, g, Z)(w(g, Z)z + r(g, Z)a − c)

+ lz(V(a, ′z , g, Z) − V(a, z, g, Z))

+ ∂ZV(a, z, g, Z)(−hZ) + 1
2
∂ZZV(a, z, g, Z)s2

+ ∫ dV(a, z, g, Z)
dg(a, z)

(KZg)(a, z)dadz.

   (A4)
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The first and second lines in this  infinite- dimensional HJB equation cap-
ture the evolution of the idiosyncratic states (a, z) ( just like in equation 
(2)). The third and fourth lines capture the evolution of the aggregate 
states (g, Z). The third line captures the evolution of aggregate TFP Z 
with standard “Ito’s Formula terms” involving the first and second de-
rivatives of the value function with respect to Z. The fourth line cap-
tures the evolution of the distribution g. Since g is a function, it involves 
the functional derivative of V with respect to g at point (a, z), which we 
denote by δV / δg(a, z). The equilibrium in fully recursive notation is 
then characterized by (A4) together with (A1), (A2), and (A3).

To understand the last term in (A4), assume momentarily that the dis-
tribution is an N- dimensional vector g = (g1, . . . , gN) rather than a func-
tion (i.e., an  infinite- dimensional object). Then the HJB equation would be

 

rV(a, z, g, Z) =
c

max u(c) + ∂aV(a, z, g, Z)(w(g, Z)z + r(g, Z)a − c)

+ lz(V(a, ′z , g, Z) − V(a, z, g, Z))

+ ∂ZV(a, z, g, Z)(−hZ) + 1
2
∂ZZV(a, z, g, Z)s2

+
i=1

N

∑ ∂V(a, z, g, Z)
∂gi

!gi.

 

Since a functional derivative δV / δg(a, z) is the natural generalization 
of the partial derivative ∂V / ∂gi to the  infinite- dimensional case, if g is 
a function rather than a vector we get (A4).

The equilibrium conditions (2) to (7) in the main text can be obtained 
from this system by evaluating “along the characteristic” (gt, Zt) that 
satisfies equations (3) and (4). In particular, the value function vt(a, z) in 
equation (2) is obtained from evaluating (A4) at (gt, Zt), that is,

 vt(a, z) = V(a, z, gt, Zt). 

In particular, by Ito’s Formula

 

dvt(a, z) = ∂ZV(a, z, gt, Zt)(−hZt) +
1
2
∂ZZV(a, z, gt, Zt)s2( )dt

+ s ∂ZV(a, z, gt, Zt)dWt

+ ∫ dV(a, z, gt, Zt)
dgt(a, z)

(KZgt)(a, z)dadz dt

 

and hence using that Et[dWt] = 0
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1
dt
Et[dvt(a, z)] = ∂ZV(a, z, gt, Zt)(−hZt) +

1
2
∂ZZV(a, z, gt, Zt)s2

+ ∫ dV(a, z, gt, Zt)
dgt(a, z)

(KZgt)(a, z)dadz.
 

Similarly, the prices and capital stock in equations (5) to (7) are obtained 
by evaluating (A1) to (A3) at (gt, Zt), that is,

 wt = w(gt, Zt), rt = r(gt, Zt), Kt = K(gt). 

Connection to Linearization of Representative Agent Models

This appendix develops the relationship between our linearization of 
heterogeneous agent models and standard linearization of represen-
tative agent business cycle models. For illustration, consider a simple 
real business cycle model. As in our heterogeneous agent models in the 
main text, the equilibrium of this representative agent model is charac-
terized by a  forward- looking equation for controls, a  backward- looking 
equation for the endogenous state, several static relations, and an evo-
lution equation for the exogenous state.

Defining the representative household’s marginal utility Lt := Ct
−g, 

the equilibrium conditions can be written as

 

1
dt
Et[dLt] = (r − rt)Lt

dKt

dt
= wt + rtKt − Ct

dZt = −hZtdt + sdWt

rt = aeZtKt
a−1 − d

wt = (1 − a)eZtKt
a

 

(A5)

and where Ct = Lt
−1/g. The first equation is the Euler equation. Marginal 

utility Λt is the single control variable; we could have alternatively writ-
ten the Euler equation in terms of consumption Ct, but working with 
marginal utility is more convenient. The second equation is the evolu-
tion of the aggregate capital stock, which is the single endogenous state 
variable. The third equation is the stochastic process for aggregate pro-
ductivity, which is the exogenous state variable. The last two equations 
define equilibrium prices.

The equilibrium conditions (14) of the simple Krusell and Smith 
(1998) model have the same structure as the representative agent model 
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above. The discretized value function vt is the endogenous control vec-
tor, analogous to marginal utility Λt (or aggregate consumption Ct) in 
the representative agent model. The distribution gt is the endogenous 
state variable, analogous to aggregate capital Kt. Finally, TFP Zt is the 
exogenous state variable, just as in the representative agent model.

The representative agent model’s equilibrium conditions can be linear-
ized and the resulting linear system solved exactly as the heterogeneous 
agent model in the main text. Let hatted variables denote deviations from 
steady state. Then we have the control variable L! t, the endogenous state 
K! t, the exogenous state Zt, and the prices p! t = (r! t, w! t). We can thus  
write

 Et

dL! t

dK! t

dZt

0

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

BLL 0 0 BLp

BKL BKK 0 BKp

0 0 −h 0
0 BpK BpZ −I

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

L! t

K! t

Zt

p! t

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

dt. 

Note that our linearized heterogeneous agent model (15) has the same 
form as this system.

Model Reduction and Proof of Proposition 1

This appendix proves the results cited in the main text regarding our 
distribution reduction method. We also show that, in discrete time, our 
approach corresponds to matching the first k periods of the impulse 
response function.

A.  Deterministic Model

As in the main text, consider first the simplified model (26) that we 
briefly restate here:

 !gt = Cgggt, 

 pt = bpggt. 

Solving this for pt gives

 
pt = bpge

Cggtg0

= bpg I + Cggt +
1
2

Cgg
2 t2 + 1

6
Cgg

3 t3 + …⎡
⎣⎢

⎤
⎦⎥

g0.
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We consider a reduced model obtained by means of projection. That is, 
we project the distribution gt on a  lower- dimensional space, and then 
analyze the dynamics of the corresponding reduced system. Of course, 
all that ultimately matters for the dynamics of the reduced system is 
that projection space itself, and not the particular basis chosen for the 
purpose of projection. Thus, for ease of presentation, in the main text 
we consider a semi- orthogonal basis XT, that is, a matrix X that satisfies 
XTX = I. Under this assumption, the reduced distribution is given by 
gt = (XTX)−1XTgt = XTgt. For the proofs in this appendix, however, it 
will turn out to be more convenient to work with a nonnormalized 
(non- semi- orthogonal) basis. Specifically, we consider a pair of matrices 
V, WT such that WTV = I. This formulation nests our analysis from the 
main text with X = V and XT = WT.

We then approximate the distribution gt through gt = (WTV)−1WTgt = WTgt

WTV)−1WTgt = WTgt. Conversely, up to projection error, we have that gt = Vgt .64 Dif-
ferentiating with respect to time thus gives the  reduced- system dy-
namics

 !gt = WTCggVgt 

 p! t = bpgVgt. 

Note that, with V = X, WT = XT, this system simply collapses to the for-
mulation in the main text. From here, we then get

 
p! t = bpgVe(WTCggV)tWTg0

= bpgV I + (WTCggV)t + 1
2

(WTCggV)2t2 + 1
6

(WTCggV)3t3 +…⎡
⎣⎢

⎤
⎦⎥

WTg0.
 

We choose the projection matrices V, WT to ensure that the dynamics of 
the reduced p! t match as closely as possible those of the unreduced pt. 
Following insights from the  model reduction literature, we take this to 
mean that  Taylor- series expansions of pt and p! t around t = 0 share the 
first k expansion coefficients. As argued before, the dynamics of the sys-
tem—and so these expansion coefficients—do not depend on the pro-
jection matrices V, WT themselves, but only on the subspaces associated 
with them.65 It is in this sense that we can first focus on general V, WT, 
and then simply conclude that all results will extend to semi- orthogonal 
matrices X that span the same subspace of RN. To match the first k ex-
pansion coefficients, it is useful to consider what is known as the  order- k 
observability matrix O(bpg, Cgg):
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 O(bpg, Cgg) :=

bpg

bpgCgg

bpg(Cgg)2

!
bpg(Cgg)k−1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

. 

We propose to consider the pair V, WT with WT = O(bpg, Cgg) and V 
chosen such that WTV = I. To see that this works, let us consider each 
term separately in the  Taylor- series expansions derived above. In all of 
the following, ei denotes the ith standard unit vector and Wi

T de notes the 
ith submatrix of WT (corresponding to bpg(Cgg)i–1). First of all we have

 
bpgVWT = W1

TVWT

= e1WT = W1
T = bpg

 

where we have used the fact that, by construction, WTV = I. Next we 
have

 
bpgVWTCggVWT = W1

TVWTCggVWT

= W2
TVWT = e2WT = W2

T = bpgCgg

 

where again we have used that WTV = I, together with the definition of 
WT. All  higher- order terms then follow analogously. Putting things to-
gether in the notation of the main text, we see that picking XT to be a 
semi- orthogonal basis of the space spanned by O(bpg, Cgg) is sufficient 
to ensure that the  Taylor- series expansion coefficients are matched.

Stochastic Model: Proof of Proposition 1

Solving out prices and the decision rules for the controls vt, we get the 
system

 !gt = (Bgg + Bgpbpg + BgvDvg

Cgg
" #$$$$$$$ %$$$$$$$

)gt + (BgvDvZ

CgZ
" #$$ %$$

)Zt 

 pt = bpggt + bpZZt. 

The dynamics of this stochastic system are characterized by the impulse 
response function
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 h(t) = bpge
CggtCgZ + d(t)bpZ 

where δ(t) is the Dirac delta function. This impulse response function 
induces the following dynamic behavior:

 pt = bpge
Cggtg0

det.part
! "## $##

+
0

t

∫ h(t − s)Zsds
stoch.part

! "#### $####
. 

As before, we consider the projection γt = WTgt and (up to projection 
error) gt = Vγt. This gives

 !gt = WTCggVgt + WTCgZZt 

 p! t = bpgVgt + bpZZt. 

This model induces the impulse response function

 h!(t) = bpgVe(WTCggV)tWTCgZ + d(t)bpZ  

and so the dynamics

 p! t = bpgVe(WTCggV)tWTg0 +
0

t

∫ h!(t − s)Zsds. 

We now proceed exactly as before and consider the  order- k observabil-
ity matrix O(bpg, Cgg):

 O(bpg, Cgg) :=

bpg

bpgCgg

bpg(Cgg)2

!
bpg(Cgg)k−1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

. 

We again set WT and V such that WT = O(bpg, Cgg) and WTV = I. Show-
ing that all terms in the deterministic part are matched is exactly analo-
gous to the argument given above. For the stochastic part, we also do 
not need to change much. The impact impulse response bpZ is matched 
irrespective of the choice of projection matrix. Next we have

 
bpgVWTCgZ = W1

TVWTCgZ

= e1WTCgZ = W1
TCgZ = bpgCgZ.

 

As before, we exploit the definition of WT as well as the fact that WTV 
= I. And finally,
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bpgVWTCggVWTCgZ = W1
TVWTCggVWTCgZ

= W2
TVWTCgZ = e2WTCgZ

= W2
TCgZ = bpgCggCgZ

 

again exactly analogous to the derivation for the deterministic part 
above. We are thus matching both the deterministic and the stochastic 
part of the dynamics up to order k in a  Taylor- series expansion around 
time t = 0. Finally, returning to the notation of the main body of the text, 
we see that letting XT be a semi- orthogonal basis of the space spanned 
by O(bpg, Cgg) is again sufficient for the  impulse- response matching.

Discrete Time

As we have seen, in continuous time, our  model- reduction procedure 
ensures that the coefficients of a  Taylor- series expansion around t = 0 
are matched. In discrete time, this procedure guarantees that we match 
the first k periods of the  impulse response functions. The stochastic 
 discrete- time model is

 gt = Cgggt−1 + CgZZt 

 pt = bpggt−1 + bpZZt. 

The impulse responses of this system are bpZ on impact and bpgCgg
h−1CgZ 

for horizons h = 1, 2,. As before, we consider the reduced system

 gt = WTCggVgt−1 + WTCgZZt 

 pt = bpgVgt−1 + bpZZt. 

Equality of the induced impulse responses for impact h = 0 is immedi-
ate. For all higher horizons, we proceed exactly as before and show that

 bpgVWTCgz = bpgCgz 

as well as

 bpgVWTCggVWTCgz = bpgCggCgz . 

Detrending the Nonstationary Model

Many equilibrium objects in the version of the model described in 
Section V are nonstationary. In this appendix, we develop a normalized 
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version of the equilibrium involving only stationary objects. In addition 
to the production side of the model described in the main text, we make 
three modifications to the two- asset model in the presence of nonsta-
tionary shocks. First, the borrowing constraint for liquid assets is 
b > bQt, where Qt is the level of aggregate productivity. Second, the 
transaction cost for accessing the illiquid account is now χ(d, a)Qt. 
Third, the lump- sum transfer from the government is now TQt.

The equilibrium of this model can be equivalently represented by a 
set of normalized objects v̂t(â, b̂, z), gt(â, b̂, z), K̂t, rta, ŵt, rtb, and Zt such that

1. Transformed HJB: v̂t(â, b̂, z) solves

 

(r + z − (1 − u)Zt)v̂t(â, b̂, z) =
ĉ, d̂

max
ĉ1−u

1 − u

+ ∂
b̂
v̂t(â, b̂, z)(T + (1 − t)ŵtez + rtb(b̂)b̂ − x(d̂, â) − ĉ − d̂ − b̂Zt)

+ ∂ âv̂t(â, b̂, z)(rtaâ + d̂ − âZt) +
′z
∑lz ′z (v̂t(â, b̂, ′z ) − v̂t(â, b̂, z))

+ 1
dt
Et[dv̂t(â, b̂, z)].

 

(A6)

The fact that TFP growth is permanent changes the effective discount 
factor in the households’ HJB equation.

2. Transformed KFE: gt(â, b̂, z) evolves according to

 

dgt(â, b̂, z)
dt

= − ∂â(sta(â, b̂, z)gt(â, b̂, z)) − ∂
b̂
(stb(â, b̂, z)gt(â, b̂, z))

−
′z
∑lz ′z gt(â, b̂, z) +

′z
∑l ′z zgt(â, b̂, z)

− zgt(â, b̂, z) + zd(â)d(b̂)g*(z), where

 

(A7)

 stb(â, b̂, z) = T + (1 − t)ŵtez + rtb(b̂)b̂ − x(d̂, â) − ĉ − d̂ − b̂Zt and 

 sta(â, b̂, z) = rtaâ + d̂ − âZt. 

Permanent TFP shocks change the effective depreciation rate of assets.

3. Transformed firm conditions: rta, ŵt, and Zt satisfy

 rta = aK̂t
a−1L

1−a − d 

 ŵt = (1 − a)K̂t
aL

−a
 

 dZt = −nZtdt + sdWt. 
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4. Transformed asset market clearing conditions

 B∗ = ∫b̂gt(â, b̂, z)db̂dâdz 

 K̂t = ∫âgt(â, b̂, z)db̂dâdz. 

To derive this normalized equilibrium, we detrend the model’s origi-
nal equilibrium objects by aggregate productivity Qt. Almost all vari-
ables in the model naturally scale with the level of productivity Qt; for 
any such variable xt, let x̂t = xt / Qt denote its detrended version. The 
one exception to this scheme is the households’ value function vt(a, b, z), 
which scales with Qt

1−u.

HJB Equation. First define an intermediate detrended value function 
v! t(a, b, z) = vt(a, b, z) / Qt

1−u. Divide both sides of the HJB (35) by Qt
1−u  

to get

 

(r + z)v! t(a, b, z) =
c,d

max
ĉ1−u

1 − u

+ ∂bv! t(a, b, z)(TQt + (1 − t)wtez + rtb(b)b − x(d, a)Qt − c − d)

+ ∂av! t(a, b, z)(rtaa + d) +
′z
∑lz ′z (v! t(a, b, ′z ) − v! t(a, b, z))

+ 1
Qt

1−u
× 1
dt
Et[dvt(a, b, z)].

 

(A8)

Next, to replace the (1/ dt)Et[dvt(a, b, z)] term, note that by the chain rule

 d
dt

v! t(a, b, z) = (d / dt)vt(a, b, z)
Qt

1−u
+ (u − 1) d logQt

dt
v! t(a, b, z), 

which implies that

 1
Qt

1−u
× 1
dt
Et[dvt(a, b, z)] = 1

dt
Et[dv̂t(a, b, z)] + (1 − u) d logQt

dt
v̂t(a, b, z). 

Plug this back into equation (A8) and rearrange to get

 

r + z + (u − 1) d logQt

dt( ) v! t(a, b, z) =
c,d

max
ĉ1−u

1 − u

+ ∂bv! t(a, b, z)(TQt + (1 − t)wtez + rtb(b)b − x(d, a)Qt

− c − d) + ∂av! t(a, b, z)(rtaa + d)

+
′z
∑lz ′z (v! t(a, b, ′z ) − v! t(a, b, z)) +

1
dt
Et[dv! t(a, b, z)].

 

(A9)
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The formulation in equation (A9) is still not stationary because there 
are permanent changes in the state variables a and b, the wage wt, and the  
transaction cost on the  right- hand side. To address this, we characterize 
the value function in terms of â and b̂, rather than a and b themselves. De-
fine the final detrended value function v̂t(â, b̂, z) as v̂t(â, b̂, z) = v! t(a, b, z).

We guess that this function v̂t(â, b̂, z) does not depend on the nonsta-
tionary variable Qt and now verify that indeed it does not. Note that

 ∂bv! t(a, b, z) = ∂bv̂t
a
Qt

, b
Qt

, z⎛
⎝⎜

⎞
⎠⎟

= 1
Qt

∂
b̂
v̂t(â, b̂, z), 

 ∂av! t(a, b, z) = ∂av̂t
a
Qt

, b
Qt

, z⎛
⎝⎜

⎞
⎠⎟

= 1
Qt

∂âv̂t(â, b̂, z), 

 

1
dt
Et[dv! t(a, b, z)] = 1

dt
Et dv̂t

a
Qt

, b
Qt

, z⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

= 1
dt
Et dv̂t â, b̂, z( )⎡⎣ ⎤⎦ − ∂âv̂t(â, b̂, z)â d logQt

dt

− ∂
b̂
v̂t(â, b̂, z)b̂ d logQt

dt
.

 

These equations then imply

 
∂bv! t(a, b, z)(TQt + (1 − t)wtez + rtb(b)b − x(d, a)Qt − c − d)

= ∂
b̂
v̂t(â, b̂, z)(T + (1 − t)ŵtez + rtb̂(b̂)b̂ − x(d̂, â) − ĉ − d̂)

 

and that

 ∂av! t(a, b, z)(rtaa + d) = ∂âv̂t(â, b̂, z)(rtaâ + d̂). 

Putting all these results together, and using the definition d logQt / dt = Zt

d logQt / dt = Zt, we get the final detrended HJB equation (A6).

KFE. The  cross- sectional distribution of households over â, b̂, z is sta-
tionary. We will directly construct the KFE for the distribution over this 
space. Analogously to equation (36), this is given by

 

dgt(â, b̂, z)
dt

= − ∂â( !̂at(a, b, z)gt(â, b̂, z)) − ∂
b̂
(
!̂
bt(â, b, z)gt(â, b̂, z))

−
′z
∑lz ′z gt(â, b̂, z) +

′z
∑l ′z zgt(â, b̂, z)

− zgt(â, b̂, z) + zd(â)d(b̂)g*(z).
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The modified HJB (A6) gives the evolution !a / Qt = rtaâ + d̂. Note that 
by the product rule,

 !̂at =
!at
Qt

− d logQt

dt
ât, 

so that !̂at = rtaâ + d̂ − (d logQt / dt)â. Using this result, and the analo-
gous one for !̂bt, we get the detrended KFE (A7).

Other Equilibrium Conditions. Detrending the remaining equilibrium 
conditions is simple:

 rta = aK̂t
a−1L

1−a − d 

 ŵt = (1 − a)K̂t
aL

−a
 

 dZt = −nZtdt + sdWt. 

Representative Agent and  Spender- Saver Models

Representative Agent. The representative agent model is identical to 
the RBC model described in the appendix section “Connection to Lin-
earization of Representative Agent Models.”

Spender- Saver. The  spender- saver model extends the household side 
of the representative agent model above to two types of households. 
First, there is a fraction λ of hand- to- mouth households who simply 
consume their income each period. Second, the remaining fraction 1 – λ 
of households make an optimal  consumption- savings decision like in 
the representative agent model.
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1. For examples studying fiscal policy, see McKay and Reis (2013) and Kaplan and 
Violante (2014); for monetary policy, see McKay, Nakamura, and Steinsson (2015), Auclert 
(2014), and Kaplan et al. (2016).

2. More precisely, in Krusell and Smith’s (1998) baseline model, which is a heteroge-
neous agent version of a standard Real Business Cycle (RBC) model with inelastic labor 
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supply, the effects of technology shocks on aggregate output, consumption, and invest-
ment are indistinguishable from those in the RBC model. Lucas (2003) succinctly captures 
many macroeconomists’ view when he summarizes Krusell and Smith’s findings as fol-
lows: “For determining the behavior of aggregates, they discovered, realistically mod-
eled household heterogeneity just does not matter very much. For individual behavior 
and welfare, of course, heterogeneity is everything.” Interestingly, there is a discrepancy 
between this perception and the results in Krusell and Smith (1998): they show that an 
extension of their baseline model with preference heterogeneity, thereby implying a more 
realistic wealth distribution, “features aggregate time series that depart significantly from 
permanent income behavior.”

3. As we discuss in more detail below, the use of linearization to solve heterogeneous 
agent economies is not new. Our method builds on the ideas of Dotsey et al. (1999), 
Campbell (1998), Veracierto (2002), and Reiter (2009), and is related to Preston and Roca 
(2007). In contrast to these contributions, we cast our linearization method in continuous 
time. While discrete time poses no conceptual difficulty, working in continuous time has 
a number of numerical advantages that we heavily exploit.

4. See table 16 of Den Haan (2010). See Section II for a description of this error metric 
and how we compare our  continuous- state,  continuous- time productivity process with 
the two- state,  discrete- time productivity process in Den Haan (2010).

5. More precisely, we apply tools from the so- called model reduction literature, in par-
ticular Amsallem and Farhat (2011) and Antoulas (2005).

We build on Reiter (2010), who first applied these ideas to reduce the dimensionality of 
linearized heterogeneous agent models in economics.

6. The codes are initially available as a Matlab toolbox at https://github.com/gregka-
plan/phact, but we hope to make them available in other languages in future releases. 
Also see the Heterogeneous Agent Resource and toolKit (HARK) by Carroll et al. (2016) 
(available at https://github.com/econ- ark/HARK) for another project that shares our 
aim of encouraging the use of heterogeneous agent models among researchers and 
policymakers by making computations easier and faster.

7. We describe our methodology in the context of incomplete markets models with het-
erogeneous households, but the toolbox is applicable for a much broader class of models. 
Essentially any high- dimensional model in which equilibrium objects are a smooth func-
tion of aggregate states can be handled with the linearization methods.

8. One- asset heterogeneous agent models, in the spirit of Aiyagari (1994) and Krusell 
and Smith (1998), endogenize the fraction of hand- to- mouth households with a simple 
borrowing constraint. Standard calibrations of these models that match the aggregate 
 capital- income ratio feature far too few high- MPC households relative to the data. In 
contrast when these models are calibrated to only liquid wealth, they are better able to 
match the distribution of MPCs in the data. Such economies, however, grossly understate 
the level of aggregate capital, and so are ill suited to general equilibrium settings. They  
also miss almost the entire wealth distribution, so that they are of limited use in studying 
the effects of macro shocks on inequality.

9. “Sensitivity” is a term used to describe how aggregate consumption responds more 
to predictable changes in aggregate income than implied by benchmark representative 
agent economies. “Smoothness” is a term used to describe how aggregate consumption 
growth is less volatile, relative to aggregate income growth, than implied by benchmark 
representative agent economies.

10. As Reiter (2010) notes in his discussion of a related method “For reasons of com-
putational efficiency, the transition matrix [ . . . ] should be sparse. With more than 10,000 
state variables, a dense [transition matrix] might not even fit into computer memory. 
Economically this means that, from any given individual state today (a given level of 
capital, for example), there is only a small set of states tomorrow that the agent can reach 
with positive probability. The level of sparsity is usually a function of the time period. 
A model at monthly frequency will probably be sparser, and therefore easier to handle, 
than a model at annual frequency.” We take this logic a step further by working with a 
 continuous- time model. As Reiter’s discussion makes clear,  discrete- time models can also 
generate sparsity in particular cases. However, this will happen either in models with 
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very short time periods (as suggested by Reiter), which are known to be difficult to solve 
because the discount factor of households is close to one, or the resulting matrices will be 
sparse but with a considerably higher bandwidth or density than in the matrices generated 
by a continuous- time model. A low bandwidth is important for efficiently solving sparse 
linear systems.

11. The assumption that idiosyncratic shocks follow a Poisson process is for simplicity 
of exposition; the method can also handle diffusion or jump- diffusion shock processes.

12. This process is the analog of an AR(1) process in discrete time.
13. The “Fully Recursive Formulation of  Krussell- Smith (1998)” section of the ap-

pendix writes the equilibrium conditions using fully recursive conditions and shows 
how to obtain the system here by evaluating these conditions “along the characteristic”  
(gt(a, z), Zt).

14. The borrowing constraint only affects equation (2) through the boundary condition 
′u (wtzi) ≥ ∂avt(0, z) for i = L, H. We impose this condition in our numerical computations, 

but for the ease of exposition suppress the notation here.
15. The fact that prices are an explicit function of the distribution is a special feature of 

the Krusell and Smith (1998) model. In general,  market- clearing conditions take the form 
F(v, g, p) = 0. Our solution method also handles this more general case.

16. We have written the price vector pt as a function of the state vector to easily 
exposit our methodology in a way that directly extends to models with more general 
 market- clearing conditions (see endnote 15). However, this approach is not necessary 
in the Krusell and Smith (1998) model because we can simply substitute the expression 
for prices directly into the households’ budget constraint and hence the matrix A(vt; pt).

17. To the best of our knowledge, there is no existing open- source automatic differen-
tiation package for Matlab that exploits sparsity. We therefore wrote our own package for 
the computational toolbox.

18. To arrive at equation (15), we first rearrange equation (14) so that all time deriva-
tives are on the left- hand side. We then take the expectation of the entire system and use 
the fact that the expectation of a Brownian increment is zero, Et[dWt] = 0, to write equa-
tion (14) compactly without the stochastic term as

 Et

dvt

dgt

dZt

0

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

u vt; pt( ) + A vt; pt( ) vt − rvt

A vt; pt( )T gt

−hZt

F gt; Zt( ) − pt

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

dt. 

Finally, we linearize this system to arrive at equation (15). Note that this compact nota-
tion loses the information contained in the stochastic term dWt . However, since we linear-
ize the system this is without loss of generality—as we discuss later, linearized systems 
feature certainty equivalence.

19. The special structure of the matrix B involving zeros is particular to the Krusell and 
Smith (1998) model and can be relaxed. In addition, the fact that we can express prices as 
a static function of g! t  and Zt is a special feature of the model; more generally, the equilib-
rium prices are only defined implicitly by a set of  market- clearing conditions.

20. Note that σ does not enter the matrix B characterizing the linearized system (16) 
and therefore also does not enter the matrices characterizing the optimal decision rules 
Dvg and DvZ.

21. McKay (2017) studies time- varying idiosyncratic uncertainty on aggregate con-
sumption dynamics. Terry (2017) studies how well  discrete- time relatives of our method 
capture time variation in the dispersion of productivity shocks in a heterogeneous firm 
model.

22. In particular DcZ(a, z) = (∂av(a, z))−(1/u)−1 ∂aDvZ(a, z). To see this note that

 c!0(a, z) = (∂av(a, z))−(1/u)−1 ∂av! 0(a, z) = (∂av(a, z))−(1/u)−1 ∂aDvZ(a, z)Z0 := DcZ(a, z)Z0. 

23. Note that this is separate from the state dependence we just discussed, which is 
concerned with how the distribution may affect the linear dynamics of the system.
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24. Note that expression (20) only holds at t = 0. At times t > 0, the distribution also 
moves g! t(a, z) ≠ 0. The generalization of equation (20) to t > 0 is C! t ≈ ∫c! t(a, z)g(a, z)dadz + ∫c(a, z)g! t(a, z)dad

a, z)g(a, z)dadz + ∫c(a, z)g! t(a, z)dadz. Since both c! t(a, z) and g! t(a, z) will be linear in Zt, so will be C! t, again rul-
ing out size and sign dependence.

25. An open question is under what conditions this procedure would be consistent 
with our use of linear approximations to solve the model. One possible scenario is as 
follows: even though the time path for the distribution might differ substantially when 
computed using the nonlinear Kolmogorov Forward equation, the time path for prices 
may still be well approximated by the linearized solution. Hence, the error in the HJB 
equation from using the linearized prices may be small.

26. Related, our linearization method obviously rules out nonlinear amplification ef-
fects that result in a bimodal ergodic distribution of aggregate states as in He and Krish-
namurthy (2013) and Brunnermeier and Sannikov (2014).

27. Another difference is that Den Haan et al. (2010) allow the process for idiosyncratic 
shocks to depend on the aggregate state. We set our idiosyncratic shock process to match 
the average transition probabilities in Den Haan et al. (2010). We have solved the model 
with time- varying transition probabilities and obtained quantitatively similar results. De-
tails are available from the authors upon request.

28. In this calculation, we have dropped one grid point from the distribution using the 
restriction that the distribution integrates to one. Hence there are N = 200 equations for v! t,  
N – 1 = 199 equations for g! t  and one equation for Zt.

29. As discussed by Den Haan (2010), there is one algorithm (Penal) that “is even 
faster, but this algorithm does not solve the actual [Krusell- Smith] model specified.”

30. Mongey and Williams (2016) use a  discrete- time relative of our method without 
model reduction to estimate a small heterogeneous firm model. Winberry (2016) provides 
an alternative parametric approach for reducing the distribution and also uses it to esti-
mate a small heterogeneous firm model.

31. The following material is based on lecture notes by Amsallem and Farhat (2011), 
which in turn build on a book by Antoulas (2005). Lectures 3 and 7 by Amsallem and 
Farhat (2011) and chapters 1 and 11 in Antoulas (2005) are particularly relevant. All lec-
ture notes for Amsallem and Farhat (2011) are available online at https://web.stanford.
edu/group/frg/course_work/CME345/ and the book by Antoulas (2005) is available 
for free at http://epubs.siam.org/doi/book/10.1137/1.9780898718713. Also see Reiter 
(2010), who applies related ideas from the  model reduction literature in order to reduce 
the dimensionality of a linearized  discrete- time heterogeneous agent model.

32. Exogenous decision rules usually relate the value function to prices, that is, vt = 
Dvppt. But prices pt = Bpggt + BpZZt in turn depend on the distribution gt and productivity 
Zt. Hence, so do the decision rules: vt = Dvggt + DvZZt, with Dvg = DvpBpg and DvZ = DvpDpZ.

33. The system (21) is called a linear time invariant (LTI) system; Zt is an input into the 
system and pt is an output. If both inputs and outputs are scalars, the system is called a 
 single- input- single- output (SISO) system. If both inputs and outputs are vectors, it is called 
a  multiple- input- multiple- output (MIMO) system. Instead of assuming that decision rules 
are exogenous, we could have assumed that there is no feedback from individuals’ deci-
sions to the distribution Bgv = 0. In that case the system (16) again becomes a  backward-  
looking system of the LTI form (21), now with Cgg = Bgg + BgpBpg and CgZ = BgpBpZ
CgZ = BgpBpZ.

34. The assumption that X is orthonormal is not necessary to derive our results, but 
makes the exposition transparent. Appendix section “Model Reduction and Proof of 
Proposition 1” derives our results using nonnormalized projection matrices.

35. The model reduction literature also presents alternatives to our “least squares” ap-
proach to computing the coefficients γt. In particular, one can also estimate γt using what 
amounts to an instrumental variables strategy: one can define a second subspace spanned 
by the columns of some matrix Z and impose the orthogonality condition ZTεt = 0. This 
yields an alternative estimate γt = (ZTX)–1ZTgt. Mathematically, this is called an oblique 
projection (as opposed to an orthogonal projection) of gt onto the k- dimensional subspace 
spanned by the columns X along the kernel of ZT. See Amsallem and Farhat (2011, lecture 
3) and Antoulas (2005) for more detail on oblique projections.
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36. Our approach for choosing the basis X is a simplified version of what the model 
reduction literature calls “moment matching.” See Amsallem and Farhat (2011, lecture 7) 
and Antoulas (2005, chapter 11). It is also the  continuous- time analogue of what Reiter 
(2010) terms “conditional expectation approach” (see his Section 3.2.2).

37. In this simple deterministic model, equation (30) can also be derived in a simpler 
fashion: the  Taylor- series approximation around t = 0 is pt ≈ p0 + !p0t + (1/2)!!p0t2 + ... + [1 / (k − 1) !]p0

(k−

t + (1/2)!!p0t2 + ... + [1 / (k − 1) !]p0
(k−1)tk−1. This is equivalent to equation (30) because the derivatives are given by 

!pt = bpg !gt = bpgCgggt , !!pt = bpgCgg
2 gt and so on. This strategy no longer works in the full 

model with aggregate productivity shocks. In contrast, the derivation in terms of the ma-
trix exponential eCggt can be easily extended to the stochastic case.

38. Observability of a dynamical system is an important concept in control theory 
introduced by Rudolf Kalman, the inventor of the Kalman filter. It is a measure of  
how well a system’s states (here gt) can be inferred from knowledge of its outputs  
(here pt). For systems like ours observability can be directly inferred from the observ-
ability matrix O(bpg, Cgg) with k = N. Note that some texts refer only to O(bpg, Cgg) with  
k = N as “observability matrix” and to the matrix with k < N as “partial observability  
matrix.”

39. Recall from equation (24) that the projection of gt onto X defines the reduced dis-
tribution as γt = XTgt. Hence the optimal decision rule can be written as v! t = Dvggt = DvgXTgt = D! vg

v! t = Dvggt = DvgXTgt = D! vggt  where D! vg = DvgXT .
40. Recall that in general pt includes both prices and other observables of interest to 

the researcher.
41. See Antoulas (2005, chapter 11) and Amsallem and Farhat (2011, lecture 7).
42. Even though Bgg is sparse and Bgp and Bpg are only ℓ × N , the matrix Bgg + BgpBpg 

that actually enters the system (22) is N × N  and not sparse (because BgpBpg is N × N  and 
not sparse). In the two- asset model in Section V, N = 60,000, and even storing this matrix 
is not feasible. Fortunately it is never actually necessary to compute this full matrix; in-
stead, it is only necessary to compute Bpg(Bgg + BgpBpg), which involves the action of BgpBpg 
on a thin ℓ × N  matrix Bpg and can be computed as (BpgBgp)Bpg.

43. One way to overcome this challenge is to use sparse matrix methods to find just the 
k eigenvalues associated with the stable eigenvectors. This is much faster than computing 
the full matrix decomposition necessary to obtain the full set of eigenvectors. However, it 
is slower than the approach we pursue in this subsection.

44. Note that, in general, the number of coefficients is different from the number of 
knot points.

45. Currently at: https://github.com/gregkaplan/phact.
46. More precisely, we choose the observability matrix so as to forecast ℓ = 5 equilib-

rium objects (namely the wage and the interest rate, plus the three equilibrium aggregates 
we are most interested in: aggregate output, consumption, investment) to order k = 1 re-
sulting in a reduced distribution γt of dimension kg = ℓ × k = 5, and we approximate the 
value function at 12 spline knot points in the wealth dimension resulting in a  reduced 
value function νt of dimension kv = 2 × 12 = 24.

47. There are kv = 12 × 2 = 24 points for the value function, kg = k × ℓ = 1 × 5 = 5 
points for the distribution because we are tracking five elements of the pt vector, and 1 
point for TFP Zt.

48. Recall that the fastest algorithm in the JEDC comparison (Den Haan 2010) is more 
than 7 minutes, or 3,500 times longer.

49. Den Haan (2010) refers to this type of figure as the “fundamental accuracy plot.”
50. We implement perfect annuity markets by making an adjustment to the asset re-

turns faced by households. In order to save on notation, we do not explicitly display 
these adjustments here, so throughout asset returns should be interpreted as inclusive of 
annuity payments.

51. Because the transaction cost at a = 0 is infinite, in computations we replace the 
term a with max{a, a}, where the threshold a > 0 is a small value (2% of quarterly GDP 
per household, which is around $500). This guarantees that costs remain finite even for 
households with a = 0.

52. See Kaplan et al. (2016) for a formal description of these processes.
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53. Fagereng et al. (2016) study consumption responses to lottery winnings using Nor-
wegian administrative data. They find that MPCs are high for households with nearly 
zero liquid assets, even if the household has positive illiquid assets.

54. The two- asset model is so much larger than the simple Krusell and Smith (1998) 
model because the individual state space is three- dimensional. To ensure an accurate ap-
proximation of the steady state, we use 30 grid points for labor productivity, 40 points for 
the illiquid asset, and 50 points for the liquid asset. The total number of grid points is 
therefore N = 30 × 40 × 50 = 60, 000.

55. Recall that k = 1 does provide an accurate approximation in the simple Krusell and 
Smith (1998) model.

56. As discussed in Section III.C, with endogenous decision rules our method does not 
necessarily provide the most efficient choice of basis X. It is possible that by following the 
iterative procedure outlined in that section, one could obtain an accurate reduced model 
with k < 300.

57. Recall that our basis X spans the subspace generated by the columns of the observ-
ability matrix.

58. Note that the aggregate capital stock is sufficient to compute the wage wt and il-
liquid return rta.

59. We have also computed a version of the model in which we drop the liquid asset 
 market clearing condition, and instead assume that the liquid return rtb is fixed and that 
the bond supply adjusts perfectly elastically to meet the demand. In this version of the 
model, a k = 100 order observability matrix appears sufficient to reduce the distri bution.

60. We match the  second- order autocorrelation, rather than the first, due to potential 
time aggregation issues, as discussed in Campbell and Mankiw (1989).

61. In the special case of the representative agent model in which the interest rate is 
constant and income growth is a random walk, these sensitivity measures are exactly 
zero. The representative agent version of our model does not satisfy this special case, 
generating nonzero measures of sensitivity.

62. Krusell et al. (2000) assume that only equipment capital features  capital- skill com-
plementarity, while structures capital has unitary elasticity of substitution. We omit struc-
tures capital for simplicity.

63. Recall that with Cobb- Douglas the dispersion of pretax labor income is constant.
64. Formally, Π := VWT is a projection, and we have that Πgt = Vγt.
65. For a detailed discussion of this, see Amsallem and Farhat (2011, lecture 7). The 

intuition is that, for the dynamics of a reduced system, only the space on which we project 
the  large- dimensional state variable matters. A sketch of the formal argument goes as fol-
lows: V and X are bases of the same space, so there exists an invertible matrix Z such that 
VZ = X, so Z–1 = XTV and Z = (XTV)–1. Similarly, there exists an invertible matrix Z! such 
that Z!WT = XT, so Z! −1 = WTX and Z! = (WTX)−1. But WTX = WTVZ = Z, so Z! = Z−1. 
Then VWT = XZ−1WT = XZ!WT = XXT  and the projections are identical.
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