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Abstract

We provide a quantitative analysis of the trade-offs between health outcomes and
the distribution of economic outcomes associated with alternative policy responses to
the COVID-19 pandemic. We integrate an expanded SIR model of virus spread into a
macroeconomic model with realistic income and wealth inequality, as well as occupa-
tional and sectoral heterogeneity. In the model, as in the data, economic exposure to
the pandemic is strongly correlated with financial vulnerability, leading to very uneven
economic losses across the population. We summarize our findings through a distribu-
tional pandemic possibility frontier, which shows the distribution of economic welfare
costs associated with the different aggregate mortality rates arising under alternative
containment and fiscal strategies. For all combinations of health and economic policies
we consider, the economic welfare costs of the pandemic are large and heterogeneous.
Thus, the choice governments face when designing policy is not just between lives and
livelihoods, as is often emphasized, but also over who should bear the burden of the
economic costs. We offer a quantitative framework to evaluate both trade-offs.
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1 Introduction

The COVID-19 pandemic has fueled a global health and economic crisis of unprecedented

severity. Six months into the pandemic, the death toll in the U.S. is approaching 200,000

and, despite massive fiscal stimulus, we are in the midst of the deepest economic contraction

in modern history. Since person-to-person contact is essential for a substantial fraction of

the U.S economy to function, and since such close contact allows the virus to spread easily,

both fatalities and economic losses are unavoidable.

It is thus not surprising that much of the debate around the appropriate policy response

to the pandemic hinges on one question: how large is the trade-off between saving lives and

preserving livelihoods? Our goal in this paper is to contribute to this debate by quantifying

this trade-off, focusing on the distributional effects of the pandemic and associated policy

responses, across different types of workers and households.

Exposure and vulnerability to the pandemic Our analysis builds on the observation

that those individuals who are most financially exposed to the pandemic are also the most

financially vulnerable.

The key dimension of heterogeneity for economic exposure to the pandemic is occupation.

Workers in occupations that both require social interaction, and have little flexibility to work

remotely (such as waiters, hairdressers, and dentists), have experienced especially large drops

in their earnings. In contrast, the earnings of workers in occupations that produce goods and

services that do not require social interactions, and have high flexibility to work from home

(such as lawyers, academics, and finance professionals) have been left relatively unscathed.

Whether these different labor market experiences translate into differences in economic

welfare depends on households’ financial vulnerability. The key dimensions of heterogeneity

for vulnerability are the size and composition of household balance sheets, eligibility for

government transfers, and the ability to increase labor supply to compensate for the fall in

income. Jointly, these factors explain the extent to which losses in income and wealth due

to the pandemic translate into a fall in consumption and economic welfare.

Using individual and household-level micro data, we document that those individuals who

work in rigid social-intensive occupations tend to have particularly low earnings, wealth and

buffers of liquid assets. On the other hand, workers in flexible occupations with low exposure

to the social sector tend to have higher earnings, robust balance sheets and enough liquid

wealth to weather the storm. This strong positive correlation between economic exposure to

the pandemic and financial vulnerability suggests that the effects of the pandemic have been

extremely unequal across the population. There is thus a great deal of scope for economic

and health policies, with appropriate patterns of redistribution, to both contain the virus

and mitigate the economic losses of the most affected households.
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Integrated epidemiological and heterogeneous agent macroeconomic model To

evaluate the scope of these possibilities, we integrate an expanded SIR model of virus spread

into a heterogeneous-agent incomplete-markets macroeconomic model, which we calibrate to

epidemiological, clinical, macroeconomic and cross-sectional data for the U.S. economy.

The epidemiological block of the model consists of a SEIR model à la Kermack and

McKendrick (1927) with two additional features: (i) a constraint on ICU (Intensive Care

Unit) capacity, which leads to a higher death rate when violated; (ii) feedback from economic

behavior to the dynamics of the pandemic that makes the transmission rate of the virus

depend endogenously on individual work and consumption choices.

The economic block of the model builds on the heterogeneous-agent incomplete-market

literature. In addition to modeling income risk, wealth and portfolio heterogeneity, we in-

troduce a number of new ingredients that are central to understanding the impact of the

pandemic and policy responses: (i) three types of goods: regular goods, social goods and

home-produced goods; (ii) three types of labor: in the workplace, remote, and home pro-

duction; and (iii) occupations that differ with respect to their flexibility for remote work,

their use in production of regular versus social goods, and how essential they are for pro-

viding critical goods and services. These elements are important for capturing household

heterogeneity in economic exposure to the pandemic and financial vulnerability. Finally, in-

dividuals’ disutility from working in the workplace, and their utility from consuming social

goods, both depend on the extent of the virus. This feature captures voluntary social dis-

tancing behaviors that lead to a fall in economic activity even in the absence of a lockdown.

Pandemic possibility frontier To summarize the trade-offs between health and eco-

nomic outcomes for different policy alternatives, we advocate the use of a distributional

pandemic possibility frontier (PPF). Figure 1 shows an example of a PPF for our baseline

experiments in which we vary the length of a workplace and social sector lockdown, with and

without fiscal support. Different policy scenarios are represented on the frontier with two

cost metrics: (i) deaths due to the virus (horizontal axis), and (ii) economic welfare costs

for those alive (vertical axis).

Most existing analyses of the welfare costs of the pandemic or lockdown policies use

a single number, such as lost GDP or unemployment, as a summary. In contrast, our

heterogeneous agent approach allows us to account for the fact that welfare losses are very

unevenly distributed across the population, by computing individual-specific welfare costs.

We measure these costs as a compensating variation in terms of liquid wealth: the one-time

wealth transfer, expressed as a multiple of each individual’s pre-pandemic monthly income,

that would make them indifferent in terms of economic outcomes between experiencing

the pandemic and associated policy response versus the pre-pandemic steady-state. The

distributional PPF reports not only the average welfare cost for each policy scenario, but

also the dispersion in these costs. For example, the shaded area in Figure 1 shows the 10th
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Figure 1: Pandemic Possibility Frontier summarizing our main results. Laissez-faire: no lockdown
and no fiscal support. U.S. lockdown: lockdown without fiscal stimulus. U.S. policy: lockdown
plus fiscal stimulus. Each point corresponds to lockdowns of different durations.

and 90th percentiles of economic welfare costs, with and without fiscal support

Relative to existing approaches, an important advantage of our frontier is that it allows

for a quantitative comparison of different policy scenarios without taking a stand on the

monetary value of life. Instead, we present policy makers with a menu of policy options that

can be evaluated against subjective indifference curves, and we identify suboptimal policies

that lie on the wrong side of the frontier. One of our objectives is to identify policies that

shift the frontier inward, thus allowing for the same number of fatalities with lower economic

costs, or vice-versa.

Main findings Our first finding is that, for all health and economic policies that we

consider, the economic welfare costs are large and very heterogeneous. For example, the

point labelled “US Lockdown” in Figure 1 shows that with a 2-month lockdown, the average

economic welfare loss is above 3 months of income, and the 90-10 ratio of economic costs

is above 2. Even in the laissez-faire scenario without any lockdown or fiscal intervention

(point labelled “Laissez-faire”), in which fatalities are highest, the average economic costs

of the pandemic are around 2 months of income, also with substantial heterogeneity. This

is because individuals react to rising infections and deaths by endogenously reducing both

social consumption and supply of workplace hours.

With or without a lockdown, the largest welfare costs accrue to households in the middle

of the income distribution. Households at the bottom of the distribution depend largely on

3



government transfers and so are less affected, whereas those at the top of the distribution

mostly work in flexible jobs. However among those in rigid occupations, the identities of

those hit hardest is affected by the lockdown. In the laissez-faire scenario, only workers

in social-intensive occupations suffer large earnings drops, whereas under the workplace

lockdown, the earnings of workers in all occupations are also hit very hard.

Our second finding is that the slope of the PPF varies tremendously with the length

of the lockdown. This finding reconciles conflicting opinions on the existence of a trade-off

between lives and livelihoods, on the basis of different views about where exactly we are

on the frontier. Two features of the pandemic are critical for this non-linearity: limited

ICU capacity and the eventual arrival of a vaccine. The two flatter segments of the frontier

correspond to lockdown durations that either reduce the time for which the ICU capacity

constraint binds (right portion, shorter lockdowns) or avoid a second wave of infections just

before the arrival of the vaccine (left portion, longer lockdowns). The steep section of the

frontier reflects the fact that lockdowns of intermediate durations are unnecessarily long if

the argument is preventing the ICU constraint from binding (flattening the curve) and not

long enough if the argument is preventing a second wave of infections.

Our third finding is that the U.S. fiscal policy response implemented in the Spring of 2020

(CARES Act) succeeded in mitigating economic welfare losses by around 20% on average,

while leaving the cumulative death count effectively unchanged. However, the stimulus

package made the economic consequences of the pandemic more unequal. This is because

the stimulus package redistributed heavily toward low-income households, while middle-

income households gained little from the stimulus package but will face a higher future tax

burden. This redistribution, together with the large fraction of hand-to-mouth households in

the bottom of the income distribution, allows the model to replicate the somewhat puzzling

empirical finding that labor incomes have fallen more for poor households than for rich ones,

and have remained persistently low, while consumption expenditures of the poor initially

fell by the most but then recovered more quickly than those of the rich (Cox et al., 2020;

Chetty et al., 2020).

Our fourth finding concerns alternative policy responses that offer a more favorable trade-

off than blunt lockdowns. We show that exempting workers in social-intensive occupations

from the workplace lockdown leads to lower economic welfare costs for a sizable part of the

population, for a given fatality rate. An even more effective policy is to impose Pigouvian

taxes on social consumption and work in the workplace, with revenues rebated to the work-

ers employed in rigid and social-intensive occupations, respectively. These more targeted

policies all generate a flatter average PPF with a more favorable trade-off between lives and

livelihoods. However, they come at the cost of more unequal economic welfare losses, a fea-

ture which would have to be appropriately managed through fiscal redistribution for these

policies to be feasibly implemented in practice.
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When tracing the pandemic possibility frontier for the U.S., we focus our attention on

lockdown and fiscal stimulus policies, since these are the health and economic policies that

have actually been implemented in the U.S. on a large scale. Additionally, we consider the

smart policies described in the preceding paragraph. We do not evaluate some alternative

policies that may potentially further flatten or shift inward the PPF, such as contact tracing,

widespread testing, border closures and mandatory quarantines. Quantifying how these

policies affect the trade-offs that we analyze is an important task for future work.

Related literature The literature on the macroeconomic implications of COVID-19 is

already vast and still growing. In existing work, macroeconomists have addressed many

dimensions of the complex interaction between the epidemic and the economy, such as:

basic calculations of the ‘lives vs economy’ trade-off (e.g. Hall et al., 2020); externalities

in individual distancing decisions and socially optimal lockdowns (e.g. Alfaro et al., 2020;

Alvarez et al., 2020; Atkeson, 2020; Eichenbaum et al., 2020; Farboodi et al., 2020; Jones

et al., 2020; Krueger et al., 2020; Moser and Yared, 2020; Piguillem and Shi, 2020; Rachel,

2020; Toxvaerd, 2020); smarter and more targeted policies in alternative to indiscriminate

lockdowns (e.g. Acemoglu et al., 2020; Akbarpour et al., 2020; Alon et al., 2020b; Azzimonti

et al., 2020; Baqaee et al., 2020; Berger et al., 2020; Dorn et al., 2020; Favero et al., 2020;

Glover et al., 2020; Gollier, 2020; Grimm et al., 2020); the relative importance of demand and

supply shocks (e.g. Baqaee and Farhi, 2020; Brinca et al., 2020; Guerrieri et al., 2020); the

long-run implications of the virus for the economy (e.g. Barrero et al., 2020; Kozlowski et al.,

2020); the role of fiscal stimulus and monetary policy (e.g. Bayer et al., 2020; Carroll et al.,

2020; Coibion et al., 2020a; Elenev et al., 2020; Faria e Castro, 2020; Ganong et al., 2020); the

labor market outcomes of different demographic groups (e.g. Adams-Prassl et al., 2020; Alon

et al., 2020a; Bick and Blandin, 2020; Brotherhood et al., 2020; Cajner et al., 2020; Coibion

et al., 2020b; Gregory et al., 2020; Hur, 2020; Mongey et al., 2020); the empirical dynamics

of income and consumption in the aggregate and across the distribution (e.g Carvalho et al.,

2020; Chetty et al., 2020; Cox et al., 2020; Hacioglu et al., 2020).

We discuss specific connections to the literature in the main body of the paper. The rest

of the paper is organized as follows. Section 2 outlines the model. Section 3 describes the

parameterization. Section 4 contains all the model simulations. Section 5 concludes.

2 Model

Our model has two building blocks: an epidemiological block and an economic block. The

epidemiological block consists of a standard compartmental SEIR model à la Kermack and

McKendrick (1927) (see e.g. Hethcote, 2000) with two modifications. First, we introduce an

Intensive Care Unit (ICU) state to capture the possibility that an overwhelmed health care
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system leads to a higher death rate. Second, we include a two-way feedback between the

dynamics of the pandemic and individual work and consumption choices.

We model households in the tradition of the heterogeneous-agent incomplete-markets

macroeconomics literature. Households face uninsurable idiosyncratic income and health

risks, and can hold both liquid and illiquid assets. This asset structure leads to realistic con-

sumption and saving behavior, including a sizable aggregate marginal propensity to consume

(MPC). Into this relatively standard framework, we introduce some less standard ingredients

that are important for understanding the impact of the pandemic and lockdown policies.

First, households consume three different types of goods: regular goods, social goods

and home-produced goods. The defining feature of social goods is that consuming them

requires social interaction with other individuals. High social interaction translates into

faster transmission of the disease. Examples of social consumption include dining in a

restaurant, going to a movie, and traveling by air.

Second, households can supply three types of labor: market work in the workplace (i.e.

on-site), market work from home (i.e. remote work), and home production. The presence of

these different types of consumption goods and labor services allows us to capture substitu-

tion along these margins in response to the pandemic and lockdown.

Third, households work in different occupations, which differ along three dimensions:

(i) Flexibility: In less flexible occupations, remote hours are a poor substitute for work-

place hours. This introduces a labor supply effect whereby some occupations’ effective

hours of labor fall in response to the pandemic or to lockdowns.

(ii) Sectoral Intensity: Some occupations are primarily employed in the production of

social goods, while others are primarily employed in the production of regular goods.

This introduces a labor demand effect whereby the demand for some occupations’ labor

services falls in response to the pandemic or to lockdowns.

(iii) Essentiality: Workers in some occupations are permitted to continue working on-site

during a lockdown.

The model is set in continuous time and there is no aggregate uncertainty. We focus on

perfect-foresight transitional dynamics that follow the unexpected arrival of various combi-

nations of the pandemic, lockdown and fiscal stimulus policies. In our benchmark we assume

flexible prices. In Appendix A.3 we consider an extension with price rigidities in which a

monetary authority sets the nominal interest rate by operating a monetary policy rule.

2.1 Epidemiological Model

The economy is populated by a continuum of individuals with initial population size N0 = 1.

At any point in time, each individual is in one of five health states. St individuals are
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susceptible to the disease; Et are exposed, meaning they have contracted the virus but are

not yet infectious (the disease is in the incubation period); It are infectious, meaning these

are active infections that can spread the virus; Ct are critically ill, meaning they are in

intensive care and may ultimately die; and Rt have recovered from the disease. The total

population size is Nt = St + Et + It + Ct + Rt which declines below one when individuals

die of the disease. For future reference, we refer to the vector et = [St, Et, It, Ct,Rt]
T as the

economy’s epidemiological state.

Susceptible individuals contract the virus and become exposed at rate βtIt/Nt, where

It/Nt is the population share of infectious individuals. Exposed individuals become infec-

tious at rate λE. Individuals exit the infectious state at rate λI , with one of two outcomes:

with probability χ they become critically ill and require ICU care, and with probability

1− χ they recover. Critically ill individuals exit the ICU at rate λC , again with one of two

outcomes: with probability P (Ct, Cmax) they die and with probability 1 − P (Ct, Cmax) they

recover. Because of the ICU constraint, the death probability out of the C state depends

on the number of critically ill patients Ct and the ICU capacity Cmax (more on this below).

Finally, recovered individuals may become susceptible again at rate λR, which we set to 0.1

We summarize these movements in the following continuous-time transition matrix:

At =


−βt

It
Nt

βt
It
Nt

0 0 0

0 −λE λE 0 0

0 0 −λI λIχ λI(1− χ)

0 0 0 −λC λC(1− P (Ct, Cmax))

λR 0 0 0 −λR

 . (1)

Individual transitions across health states give rise to a system of differential equations

for the economy’s epidemiological state, given by

ėt = AT
t et, et = [St, Et, It, Ct,Rt]

T. (2)

This is the standard system of differential equations of a compartmental model written in

matrix form. For example, the first, second and third equations read

Ṡt = −βt
It

Nt

St + λRRt, Ėt = βt
It

Nt

St − λEEt, İt = λEEt − λIIt

Our model features a two-way feedback between economic behavior and the dynamics of

the pandemic. To model the feedback from economic behavior to infections we assume that

1While we set λR = 0 in most of our exercises, this parameter allows for the possibility of partial, rather
than permanent, immunity.
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the transmission rate of infections is given by

βt = β(Cst, Lwt, t), (3)

where Cst is aggregate social consumption and Lwt is aggregate workplace hours. The func-

tion β is increasing in its first two arguments. Social consumption and workplace hours

are defined in more detail in the next section. The parameterization of the function β is

described in Section 3. Other recent macroeconomic analyses of the COVID-19 crisis feature

similar reduced-form feedback mechanisms (see e.g. Eichenbaum et al., 2020).

We assume that when the number of critical patients exceeds the fixed ICU capacity

Cmax, the death probability conditional on being critically ill is higher:

P (Ct, Cmax) = δC +∆C max {Ct − Cmax, 0} /Ct, (4)

where δC > 0 is the death probability for those patients who have an ICU bed and ∆C ∈
[0, 1− δC ] is the excess death probability for those patients who do not obtain an ICU bed.

Under these assumptions, COVID-19 deaths evolve as Ḋt = λCCtP (Ct, Cmax), where Dt

denotes cumulative deaths. Individuals in all health states are also at risk of death from

other causes, which occurs at the lower Poisson rate δN . Each person dying of other causes

is replaced by a newborn in the susceptible state.2

2.2 Economic Model

Individuals The economy is populated by a continuum of individuals, indexed by their

holdings of liquid assets b, illiquid assets a, idiosyncratic labor productivity z, occupation

j and health status h.3 Labor productivity follows an exogenous Markov process that we

describe in detail in Section 3. At each instant in time t, the state of the economy is the

joint distribution µt(da, db, dz, j, h).

Individuals receive a utility flow U from three types of goods: regular consumption ct
(the numeraire), social consumption st and a home-produced good ht. They also receive a

disutility flow V from supplying three types of labor: work in the workplace ℓwt, remote work

ℓrt, and labor input into home production ℓht which produces goods one-for-one, ht = ℓht.

2In the current draft we also assume that each person dying of COVID-19 is replaced by a newborn in the
recovered state. This simplifies computations because it leaves the total population size unaffected. While
we do not expect this assumption to affect our conclusions in a quantitatively noticeable fashion (because
even without replacing COVID-19 deaths by newborns, the level of the population would not change much
in absolute terms), we plan to relax this assumption in later drafts.

3Throughout the text, we use the term individuals to describe the unit at which economic decisions
are made. We also sometimes interchangeably use the term households, particularly when we bring the
model to the data in Section 3. This fuzziness in terminology is due to an inherent tension between the
model’s economic and epidemiological blocks: while households are the more natural units for economic
decision-making, disease transmission occurs at the individual level.
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U is strictly increasing and strictly concave in its three inputs. V is strictly increasing and

strictly convex. Preferences are time-separable and, conditional on surviving, the future is

discounted at rate ρ ≥ 0:

E0

ˆ ∞

0

e−ρt
[
U(ct, υs(Ḋt)st, ht)− V (υℓ(Ḋt)ℓwt, ℓrt, ℓht)

]
dt, (5)

where the expectation is taken over realizations of idiosyncratic productivity and health

shocks and also takes into account life expectancy in different health states. A healthy

individual faces a baseline death rate δN , whereas a critically ill individual faces death rate

P (Ct, Cmax) defined in (4). Because of the law of large numbers, and the absence of aggregate

shocks, there is no economy-wide uncertainty.

Both the utility from consuming social goods and the disutility from supplying work in

the workplace depend on the state of the pandemic through the terms υs(Ḋt) and υℓ(Ḋt)

where Ḋt is the excess death rate in the population at time t. This formulation allows us to

capture, in a reduced-form fashion, the behavioral response of individuals to increasing death

rates: as Ḋt rises, the marginal utility of social consumption falls and the marginal disutility

of workplace hours increases. The formulation is therefore conceptually similar to the way

that feedback from pandemic to behavior is modeled in Farboodi et al. (2020), Eichenbaum

et al. (2020) and others. Below we explain how our formulation is closely related to the

calculations of the value of statistical life (VSL), a mapping that helps in parameterizing

this feedback.

Individuals are employed in different occupations, indexed by j ∈ J . Occupations are

imperfect substitutes in production and therefore pay occupation-specific wages wj per ef-

ficiency unit of hours worked. An occupation’s flexibility is denoted by ϕj ∈ [0, 1], which

describes how much less productive are remote hours than workplace hours in that occu-

pation. The labor income of an individual with average efficiency units z = 1 working in

occupation j equals wj
t (ℓwt + ϕjℓrt). A fully rigid occupation has ϕj = 0 and a fully flexible

occupation has ϕj = 1.

Individuals can save in liquid assets b and illiquid assets a. Assets of type a are illiquid in

the sense that individuals incur a cost for depositing into or withdrawing from their illiquid

account. We use dt to denote an individual’s deposit rate (with dt < 0 corresponding to

withdrawals) and χ(dt, at) to denote the flow cost of depositing at a rate dt for an individual

with illiquid holdings at. In equilibrium, the presence of the transaction cost implies that the

illiquid asset earns a higher real return than the liquid asset so that rat > rbt . Short positions

are not allowed in either asset.
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An individual’s asset holdings evolve according to:

ḃt = (1− τt)w
j
t zt(ℓwt + ϕjℓrt) + rbtbt + Tt − dt − χ(dt, at)− ct − pstst (6)

ȧt = rat at + dt (7)

bt ≥ 0, at ≥ 0. (8)

Net liquid savings ḃt are given by the individual’s income flow (composed of labor earnings

taxed at rate τt, interest payments on liquid assets, and government transfers Tt) net of

deposits into (dt > 0) or withdrawals from (dt < 0) the illiquid account, transaction costs

χ(dt, at), and consumption expenditures ct + pstst. Net illiquid savings ȧt equal interest

payments on illiquid assets plus net deposits from the liquid account dt.

Individuals differ in their health state h which also determines their ability to supply

labor. All individuals other than the critically ill can supply labor. Although individuals are

in one of five true underlying health states S, E , I, C and R, we assume that only critically

ill C individuals know their true health state while others cannot distinguish which of the

four remaining states S, E , I or R they are in. This assumption reduces the individual state

space from five to two, since we only need to keep track of whether individuals are able to

supply labor, which we denote by h = a, or critically ill, h = c.4

Individuals that are able to supply labor (h = a) maximize (5) subject to (6)–(8). They

take as given the dynamics of the pandemic (2), the equilibrium paths for real wages in differ-

ent occupations {wj
t}t≥0, j = 1, ..., J , the real return to liquid assets {rbt}t≥0, the real return

to illiquid assets {rat }t≥0, the relative price of social goods {pst}t≥0 and taxes and transfers

{τt, Tt}t≥0. Critically ill individuals (h = c) solve a different problem that is described in

Appendix A.2. Rather than choosing consumption optimally the government provides them

with fixed amounts of regular and social consumption c and s.

As we explain below, {rbt}t≥0, {wj
t}t≥0, {rat }t≥0 and {pst}t≥0 are determined by market

clearing conditions for bonds, capital, labor and social goods.

Sectors and occupations There are two production sectors, indexed by i: the regular

consumption sector (i = c) and the social sector (i = s). Intermediate producers in each

sector produce using capital Ki and the labor input of occupation j, N j
i :

Yi = ZiN
αi
i K1−αi

i , Ni =

[∑
j∈J

(
ξji
) 1

σ
(
N j

i

)σ−1
σ

] σ
σ−1

, i = c, s. (9)

The sectoral intensity parameters (ξjc , ξ
j
s) describe the importance of labor from each occu-

pation j for production in each of the two sectors. Importantly, these sectoral intensities

4One implication of this assumption is that we cannot allow for testing in this version of the model. While
somewhat unrealistic, this assumption drastically simplifies computation of individuals’ economic decisions.
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Occupation
Type Examples
Essential Nurse, Firefighter, Mail carrier, Subway operator
C-intensive Flexible Economist, Writer, Software developer, Accountant
C-intensive Rigid Carpenter, Electrician, Astronomer, Biologist
S-intensive Flexible Sec. school teacher, Therapist, Property manager
S-intensive Rigid Cook, Waiter, Dancer, Travel guide

Table 1: Examples of different types of 3-digit occupations grouped by their sectoral intensity and
their degree of flexibility (i.e. ability to work remotely). See Section 2.2 for details.

differ across occupations, which implies that some occupations are more intensely employed

in the production of social goods than others. Intermediate producers rent capital at rate

rkt in a competitive capital market and hire labor at wage wj
t in competitive labor markets

for each occupations j.

Table 1 clarifies the distinction between the flexibility and the sectoral intensity dimen-

sions of occupational heterogeneity. For example, software developers and accountants are

occupations with high flexibility and low social intensity, because workers in these occupa-

tions can effectively work remotely and are typically employed in sectors that produce goods

whose consumption does not involve much social interaction with other individuals. In our

simulations of the pandemic and lockdown, neither the demand nor supply of labor in these

occupations will be strongly affected. In contrast, waiters and travel guides are occupations

in which workers cannot effectively work from home, and are employed in sectors that pro-

duce social goods. During the pandemic and lockdown, both demand and supply of labor in

these occupations will be strongly affected.

The third dimension of occupational heterogeneity is that some occupations are deemed

essential. Our definition of essential occupations are those which cannot be effectively per-

formed remotely (low flexibility), but are not subject to government-mandated work from

home orders. Examples of essential occupations include nurses and mail carriers. Although

the labor supply of essential occupations is not affected by the lockdown, the pandemic does

induce a moderate fall in labor demand for these occupations because some of them are

intensive in the social sector.5

Monopolistic competition and final goods production In each sector i = c, s, a com-

petitive representative final-goods producer aggregates a continuum of intermediate inputs

5Examples of essential occupations that have seen a sharp fall in demand include health-care occupations
not directly involved in the hospitalizations caused by the virus, such as dentists and physical therapists.
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indexed by ω ∈ [0, 1]

Υi =

(ˆ 1

0

Yi(ω)
ε−1
ε dω

) ε
ε−1

, i = c, s

where ε > 0 is the elasticity of substitution across goods. Cost minimization implies that

demand for intermediate good ω is

Yi(ω) =

(
pi(ω)

Pi

)−ε

Υi, where Pi =

(ˆ 1

0

pi(ω)
1−εdω

) 1
1−ε

, i = c, s

Each intermediate good ω is produced by a monopolistically competitive producer with

production function (9) who takes this demand curve as given.6

Investment fund Illiquid assets are equity claims on an investment fund. Thus, at every

date t the value of the fund At equals households’ aggregate stock of illiquid assets
´
adµt.

The investment fund owns the economy’s capital stock Kt and makes the economy’s in-

vestment decision subject to an adjustment cost Φ(ιt), where ιt is the investment rate, i.e.

investment as a fraction of the capital stock. The fund also owns shares of the intermediate

producers in the regular and social goods sectors (Θst, Θct) that represent claims on the

future stream of monopoly profits Πit in each of the two sectors, i = c, s. We denote the

price of these shares by qit.

The investment fund solves the problem

A0 := max
{ιt,Θct,Θst}t≥0

ˆ ∞

0

e−
´ t
0 rasds

{
[rkt − ιt − Φ(ιt)]Kt +

∑
i=c,s

(ΠitΘit − qitΘ̇it)

}
dt

subject to K̇t = (ιt−δ)Kt with K0,Θc0 and Θs0 given. It follows that the optimal investment

rate ιt satisfies 1+Φ′(ιt) = qkt where qkt is the fund’s shadow value of capital; (ii) the value of

the fund is given by At = qktKt + qctΘct + qstΘst; and (iii) the illiquid asset return rat satisfies

the no-arbitrage condition

rat =
rkt − ιt − Φ(ιt) + qkt (ιt − δk) + q̇kt

qkt
=

Πct + q̇ct
qct

=
Πst + q̇st

qst
. (10)

This condition implies that the value of equity in each sector is given by qit =
´∞
t

e−
´ τ
t rasdsΠiτdτ

for i = c, s.7

6In equation (9) we ignored dependence of production on ω. This is because all intermediate producers
within a sector i are symmetric and therefore make the same production and pricing decisions, and so
Yi(ω) = Yi, i = c, s. In our baseline model with flexible prices, the only role of monopolistic competition is
that firms charge a positive markup ε

ε−1 over marginal costs. In Appendix A.3 we consider the case with
sticky prices in which case monopolistic competition opens the door to modeling a dynamic price-setting
decision subject to price adjustment costs.

7In Alves et al. (2020) we formally derive equation (10) in a one-sector model. The extension of the proof

12



Government The government is the sole issuer of liquid assets in the economy, which are

real bonds of infinitesimal maturity Bg
t . It faces exogenous expenditures Gt and administers

a progressive tax and transfer scheme on individual labor income wj
t z(ℓ

j
wt+ϕjℓjrt), consisting

of a proportional tax rate τt and transfers T j
t (a, b, z, h) that can depend on the individual

state. We also allow the government to subsidize wage payments and profits at rates (ςwt, ςπt)

to capture a potentially important aspect of the fiscal response to the pandemic. The

government intertemporal budget constraint reads:

Ḃg
t +(τt − ςwt)

ˆ
wj

t z
[
ℓjwt(·) + ϕjℓjrt(·)

]
dµt = Gt +

ˆ
T j
t (·)dµt + ςπt(Πct +Πst)+ rbtB

g
t . (11)

Lockdowns Lockdowns are government executive orders that affect the economy in two

ways.

1. Lockdowns constrain economic activity in the social goods through bans on dining in

and closure of non-essential businesses. We model this component by assuming that

the governments limits utilization of capital, i.e. capacity, in the social sector. Hence

during the lockdown, the production function (9) in the social goods sector becomes

Ys = Zs(κsKs)
αsN1−αs

s with 0 ≤ κs ≤ 1 (12)

where κs measures the degree of capital utilization allowed by the government.

2. Lockdowns also constrain the supply of workplace hours through stay-at-home orders.

We model this component by imposing the additional constraint on household labor

supply

ℓjw ≤ κj
ℓ(ℓ

j
w + ℓjr) with 0 ≤ κj

ℓ ≤ 1. (13)

where κj
ℓ measures the maximum share of work that can be performed in the work-

place.8

The parameters κs and κj
ℓ are policy parameters. If κs = κj

ℓ = 0 there is a full lockdown:

sector s is shut down completely and on-site work is banned. If 0 < κs, κ
j
ℓ < 1 the economy

is partially locked down. Denoting essential occupations by j = E, we assume that κE
ℓ = 1

always, meaning that essential occupations can continue to work in the workplace even

during a lockdown. Because we let the virus transmission rate βt depend on the aggregate

level of social consumption and workplace hours (see equation (3)), both types of lockdown

to two sectors is straightforward, so we omit it.
8An alternative formulation would impose the constraint on the level of workplace hours directly rather

than on the share ℓjw ≤ κj
ℓ . Both specifications capture the spirit of the stay-at-home orders, but the former

is more computationally tractable.

13



taper the growth of the pandemic.9

Our specification implies that lockdowns affect the same behavioral margins as the pan-

demic itself. During the pandemic, individuals voluntarily substitute away from social con-

sumption and workplace hours. During a lockdown, the government forces them to substitute

along the same margins. A distinction is that the lockdown constrains the supply of social

goods whereas voluntary substitution away from social goods lowers the demand for those

goods.

2.3 Equilibrium

Given an initial condition for the pandemic I0, a lockdown policy
{
κst, κ

j
ℓt

}
t≥0

, and a path for

fiscal variables
{
Gt, τt, ςwt, ςπt, T

j
t (·)
}
t≥0

, an equilibrium in this economy is defined as paths

for the pandemic state vector {et}t≥0, individual and firm decisions, distributions {µt}t≥0,

government debt {Bg
t }t≥0 and prices such that, at every time t: (i) the state of the pandemic

is determined by the law of motion (2); (ii) individuals and firms maximize their objective

functions taking as given equilibrium prices, taxes, and transfers; (iii) the distribution µt

satisfies aggregate consistency conditions; (iv) the government budget constraint holds; and

(v) all markets clear.

There are 12 markets in our economy: liquid and illiquid asset markets, the capital mar-

ket, labor markets for the five occupations, goods markets for regular and social consumption

goods, and share markets for the equity of social and regular goods producers.

The liquid asset market clears when

Bh
t = Bg

t , (14)

where Bg
t is the stock of outstanding government debt and Bh

t =
´
bdµt is total individual

holdings of liquid bonds. The capital market clears when capital demand by the two sectors

equals capital supply by the fund

Kct +Kst = Kt.

The markets for stocks of each sector i clear when Θit = 1 for i = c, s, where we have

normalized the total number of sectoral shares to one. This implies that individuals’ holdings

of illiquid assets At =
´
adµt equal the value of capital plus the equity value of monopolistic

producers:

At = qkt Kt + qct + qst . (15)

9Note an important difference between the workplace lockdown and the social sector lockdown. Under
the former, those employed in S-intensive flexible occupations (e.g., an event planner or a museum curator)
can work remotely and keep earning their wages. Under the latter, they cannot.
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The labor market for each occupation clears when

N j
c,t +N j

s,t =

ˆ
z(ℓjwt(a, b, z, a) + ϕjℓjrt(a, b, z, a))dµt, j ∈ J (16)

Finally, the markets for regular and social goods clear when

Yct = Cct + It +Gt + χt, Yst = Cst. (17)

Here, Cct and Cst are total consumption expenditures in the two sectors, It is gross additions

to the capital stock Kt, Gt is government spending, and the last term reflects transaction

costs, which we interpret as financial services.

3 Parameterization

3.1 Epidemiological Model

In this section we describe our parameter choices for the epidemiological block of the model.

The data that underlies these choices is rapidly evolving, and we plan to make updates as

new information becomes available. Our choices reflect the state of knowledge at the time

of writing in August 2020. The resulting parameter values are summarized in Table 2.

Epidemiological parameters The basic reproduction number R0(t) := βt/λI varies over

time in our model because the transmission rate βt is time-varying (see discussion below).10

We set the initial basic reproduction to Rinit
0 := R0(0) = 2.5. This value is based on Liu et al.

(2020), who reviewed 12 studies that estimate the basic reproduction number for COVID-19

and conclude that R0 is likely in the range of 2–3.

Together with the average duration of infection Tinf = 1/λI , the initial basic reproduction

rate Rinit
0 determines the dynamics of the infection pool at the onset of the pandemic, when

the behavioral response is still largely absent. From the system of equations for the dynamics

of the pandemic (1) and (2), one obtains:

İt + Ėt = β0
St

Nt

It − λIIt ≃
(
Rinit

0 − 1

Tinf

)
It. (18)

where the second approximate equality holds because in the early stages of the pandemic,

10Throughout the paper, we use R0(t) to refer to what the average number of secondary cases would be if
the entire population were fully susceptible and remained so throughout the epidemic. This is a arguably an
abuse of epidemiological terminology because epidemiologists often reserve R0 to mean the average number
of secondary cases in a fully susceptible population, i.e. our R0(0). Our terminology is convenient simply
because βt/λI appears frequently in our analysis.
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Parameter Value

Epidemiological
Average duration of Exposure (latent period) Tlat ⇒ λE = 1/Tlat 5.0 days
Average duration of Infectious Tinf ⇒ λI = 1/Tinf 4.3 days
Initial basic reproduction number Rinit

0 2.5
Initial transmission rate β0 = Rinit

0 /Tinf 0.58
Initial condition I0 6.5× 10−4

Behavioral
Final basic reproduction number Rend

0 2
Month at which learning starts tlrn 4
Speed of learning λβ 2
Behavioral elasticities νsβ = νwβ 0.8

Clinical
Pr of exiting Infectious and becoming Critical χ 0.02
Average duration of Critical state Tcri ⇒ λC = 1/Tcri 10 days
Infection fatality rate IFR 0.01
Pr of dying when Critical & C ≤ Cmax δC 0.33
Pr of dying when Critical & C > Cmax δC +∆C 1
ICU Capacity / Adult Population Cmax 0.00024
Rate at which Recovered become Susceptible again λR 0
Month at which vaccine arrives tvac 24

Table 2: Parameterization of the epidemiological/clinical block of the model.

the entire population is susceptible St ≃ Nt. This equation states that the initial growth

rate of infections is
(
Rinit

0 − 1
)
/Tinf . In most countries the initial growth rate of infections in

the first week was around 35%, which implies Tinf = 4.3.11 This estimate is within the ‘best

estimate’ interval of 4-5 days reported in the compendium by Bar-On et al. (2020). The same

authors report ‘best estimates’ for the median latent period (the time between exposure and

becoming infective) between 3 and 4 days. A median of 3.5 days implies Tlat = 1/λE = 5.

Behavioral parameters The infection transmission rate βt varies over the course of the

pandemic, because individuals alter their behavior either voluntarily, or due to a lockdown.

As indicated by the arguments of equation (3), we allow for three behavioral channels:

changes in social consumption (Cst), changes in workplace hours (Lwt) and exogenous learn-

ing about best-practice behavior during a pandemic, such as wearing face masks (t). We

assume the following isoelastic functional form for the function β(Cst, Lwt, t):

βt = β̃t

(
Cst

C̄s

)νβ
(
Lwt

L̄w

)νβ

, (19)

11See, for example, https://www.ft.com/coronavirus-latest, which collects data on the evolution of infec-
tions across countries. The first week is defined as the week after the first 3 cases were officially detected.
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Figure 2: Percentage decline in mobility for ‘workplace’ (left panel) and ‘retail and recreation’
(right panel) in the US relative to the baseline (median value, for the corresponding day of the
week, during the 5-week period Jan 3 - Feb 6, 2020). These are the empirical proxies for hours
worked in the workplace and expenditures on social good in the model. The circles are the raw
data, the solid fitted lines are 7-day moving averages to filter out seasonality. Source: Google
COVID-19 Community Mobility Reports.

where β̃t captures the exogenous reductions in transmission rates through learning about

best-practice behavior. The parameter νβ measures the elasticity of the transmission rate to

changes in social consumption and workplace hours.12

According to Ferguson et al. (2020), shelter-in-place measures can reduce contacts out-

side households by up to 75% under full compliance. Real-time estimates of the effective

reproduction number Rt = R0(t) × St = βt/λI × St for the U.S. imply reductions of Rt of

around two-thirds (with some notable variation across states) after the lockdown was put

in place.13 Since lockdowns were put in place early in the pandemic when St ≃ 1, these

estimates imply a reduction in R0(t) by a similar amount.

Google COVID-19 Community Mobility Reports offer an indication of the magnitude

of the decline in social consumption and on-site work, as they chart physical movements

between different categories of places, including retail & recreation and workplace.14 These

data, summarized in Figure 2, show that over the period where most U.S. states were under

a full lockdown, activity in retail and workplace declined by roughly 50% compared to mid

February 2020. Under the assumption that the reduction in workplace and in retail &

recreation mobility are good proxies for the cutback in onsite work hours and expenditures

12The quadratic matching nature of the SIR model means that what matters is for transmission is average
hours worked of the susceptible times average hours worked of the infectious. In our model the two are
the same, which justifies the use of the average across population groups in (19). The Cobb-Douglas spec-
ification captures the idea that there is a complementarity between the reduction in workplace and retail
activities in containing the spread of the virus. An alternative specification without complementarity is

βt = β̃(t)
[(

Cst

C̄s

)νβ

+
(

Lwt

L̄w

)νβ
]
.

13 These estimates are provided by The COVID Tracking Project and available at https://rt.live.
14See https://www.google.com/covid19/mobility.

17

https://rt.live
https://www.google.com/covid19/mobility


on social goods, respectively, a fall in R0(t) from 2.5 to 0.82 (−66% from 2.5) implies νβ = 0.8.

The exogenous component β̃t captures reductions in the transmission rate βt that arise

from changes in social norms about cheap preventive measures, such as wearing masks,

washing hands, etc. We specify this time path in terms of R̃0(t) := β̃t/Tinf , which is the

exogenous component of the basic reproduction number (i.e. the basic reproduction number

R0(t) in the absence of behavioral feedback from social consumption or workplace hours).

To capture the typical path of learning dynamics, we assume that R̃0(t) = (1− ω(t))Rinit
0 +

ω(t)Rend
0 with Rend

0 < Rinit
0 . We assume that ω(t) = 1/(1 + e−λβ(t−tlrn)) follows a logistic

learning curve as in Griliches (1957) and can be interpreted as the fraction of the population

who have learned about best-practice behaviors. We set Rend
0 = 2 so that the exogenous

component of the transmission rate R̃t declines by 20% from its initial value of Rinit
0 = 2.5

over the course of the pandemic.15 We set tlrn = 4 months and λβ = 2 which implies that

most of the learning takes place within 4 months.

Clinical parameters The clinical parameters of the model are taken from Ferguson et al.

(2020) (a.k.a the Imperial College Report), most of which are in line with the estimates from

Zhou et al. (2020) using data from the Wuhan episode. According to this report, the average

duration of the critical state Tcri = 1/λc is 10 days, the death probability conditional on being

critical is 33%, and the overall infection fatality rate (IFR) is around 0.66%, which is also the

midpoint of the estimate in Bar-On et al. (2020). Because only critically ill individuals die

in our model, IFR = χ× 33% which requires setting χ, the probability of becoming critical

when exiting the I state, to 2%.16

We parameterize ICU capacity Cmax as the number of ICU beds relative to the initial

population, which we interpret as the U.S. adult population of roughly 250 million people.

According to the Harvard Global Health Institute, there are around 60, 000 ICU beds avail-

able in U.S. hospitals, implying Cmax = 0.00024.17 We assume that when the health care

system is at capacity, all critically ill who exceed the number of available beds die with

certainty.

Finally, we assume that a vaccine yielding full immunity starts being distributed in month

tvac = 24 after the initial outbreak of the virus, and the entire population is vaccinated very

rapidly.

15Some empirical papers studying the efficacy of masks and other cheap preventive measures argue for
even larger drops in R0 of up to 40% (see e.g. Mitze et al., 2020). We have also experimented with such
larger drops and these alternative assumptions do not affect our main results much.

16The Imperial College report sets χ to 1.5%, the product of a 5% hospitalization rate and 30% probability
of ending in ICU when hospitalized. Wu and McGoogan (2020) estimate χ between 3% and 5% using data
for China.

17Source: https://globalpandemics.org/our-data/hospital-capacity.
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Figure 3: ‘Naive’ dynamics of pandemic without behavioral response (i.e., β0 fixed at 0.58) and
without lockdowns.

Benchmark pandemic dynamics We interpret t = 0 as 1 March 2020 and set I0 =

6.5 × 10−4 at this date. With this initial condition, our baseline simulations that include

the endogenous behavioral feedback and a lockdown designed to mimic the one in the U.S.,

imply that there are around 100,000 deaths after 3 months, as in the data.18

For ease of comparison with other studies, Figure 3 plots the counterfactual dynamics

of the pandemic in the absence of any behavioral feedback (tlrn = ∞, νs
β = νℓ

β = 0) and

without any lockdown or other interventions, which we refer to as the naive model dynamics.

The naive model dynamics predict a peak of active infections of approximately 9% of the

population after less than 3 months and a final cumulative infections of approximately 87% of

the population. Therefore, total infections overshoot quite dramatically the herd immunity

threshold of 1− 1/Rinit
0 = 60%. Cumulative deaths are roughly 1.6% of the population, and

hence almost three times as large as the number implied by the baseline IFR of 0.66%, i.e.

0.66% × 87% = 0.57%, because the ICU constraint binds for almost three months during

the pandemic. These extremely dire clinical predictions are based on the naive version of

the model that abstracts from both the behavioral response and public health interventions,

both of which happened in reality and which we incorporate in our full model.

3.2 Economic Model

3.2.1 Production

Sectors The Bureau of Economic Analysis’s (BEA) 2-digit 2017 NAICS industry classifi-

cation contains 21 private sector industries.19 We allocate each of these industries to either

the regular (c) or social (s) sectors based on the degree of social interaction, either with

18Source: https://covidtracking.com/data/us-daily.
19Source: Table ‘Components of Value Added by Industry,’ https://www.bea.gov.
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NAICS code Sector C (value added share: 0.74) NAICS code Sector S (value added share: 0.26)
11 Agriculture, forestry, fishing, and hunting 44-45 Retail trade
21 Mining 481-482-483 Air, rail, and water transportation
22 Utilities 485-487-488 Transit and scenic transportation
23 Construction 61 Educational services
31-32-33 Manufacturing 62 Health care and social assistance services
42 Wholesale trade 531-532-533 Real estate, rental and leasing services
484-486 Truck and pipeline transportation 71 Arts, entertainment, and recreation services
491-492 Postal transportation 72 Accommodation and food services
493 Warehousing and storage 81 Other services (excluding P.A.)
51 Information
52 Finance and insurance
– Housing services
54-55 Professional, technical, and scientific services
56 Management and administrative services

Table 3: Classification of 2-digit NAICS industries into c and s sectors.

other customers or with workers, required to consume them. According to our classification,

reported in Table 3, the total value added share of the c sector is 0.74 and the value added

of the s sector is 0.26. Using industry-level labor shares, we also compute the implied labor

shares in the two sectors. We find that the social goods sector is much more labor intensive

than the regular goods sector, with a 54% larger labor share.20

Occupations We assume that individuals work in one of J = 5 occupations. One of these

occupations, labeled E, consists of essential workers who are not affected by the lockdown.

The four non-essential occupations are differentiated in terms of their flexibility (F for more

flexible, R for more rigid) and their sectoral intensity (C for more intensive in production of

regular goods, S for more intensive in production of social goods). So for example, occupation

CF contains workers who can work from home with relatively little loss in productivity, and

produce goods or services that entail relatively little social interaction.21

To calibrate occupation-level parameters, we categorize each of the 430 5-digit 2010

SOC occupation codes as either flexible or rigid, based on the analysis of O*NET data in

Dingel and Neiman (2020a), and our own analysis of American Time Use Survey (ATUS).

In Appendix B.1, we show that the employment weighted correlation between these two

measures is 0.8. We use the O*NET based classifications for our calculations. We categorize

20Some industries map cleanly into the regular or social goods sector. For example, food services (e.g.
restaurants), other services (e.g. hairdressers), and entertainment (e.g. movie theaters) fit naturally in the
s sector, whereas mining, manufacturing, and finance fit naturally in the c sector. Within more ambiguous
industries, we separated out 4-digit sub-industries into different sectors. For example, in the transportation
industry, we included rail, air and transit transportation in the s sector, but we included postal, pipeline
and truck transportation in the c sector. Similarly, in the real estate, rental and leasing sector, we included
real estate (e.g. services from housing) in the c sector, but we included other rental services (e.g. services of
real-estate and car-rental agents) in the s sector.

21Recall that Table 1 illustrates several examples of occupations in each of the five groups.
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Occupation Share of Share of Average Employment
Type ϕj Lab Inc C Lab Inc S ξjc ξjs Earnings Share
E 0.01 0.211 0.353 0.191 0.356 44, 745 0.308
CF 0.99 0.535 0.118 0.575 0.141 79, 422 0.211
CR 0.10 0.191 0.041 0.181 0.043 44, 813 0.133
SF 0.99 0.028 0.193 0.025 0.193 50, 619 0.104
SR 0.10 0.035 0.295 0.028 0.267 32, 000 0.244

Table 4: The five occupation groups in the model: Essential (E) , C-intensive Flexible (CF ),
C-intensive Rigid (CR), S-intensive Flexible (SF ), S-intensive Rigid (SR). Sectoral labor shares,
employment and earnings. Earnings are in 2017 dollars.

each occupation as either C-intensive or S-intensive based on their relative labor shares in

the industries in each sector, as reported in Table 3. We define essential workers as those

in both occupations with low flexibility and industries that are classified by the Department

of Homeland Security as “critical infrastructure workers”. Appendix B.1 contains a detailed

description of this procedure.

Table 4 reports the average earnings and employment shares of each of the five occupa-

tions and the share of total labor income in the C and S sectors going to each occupation.

Average annual earnings are highest for the C-intensive flexible occupations ($79,000) and
lowest for the S-intensive rigid occupations ($32,000).

Technology We set the flexibility indexes {ϕj} for the essential and flexible occupations

very close to 0 and 1, respectively to respect the nature of these definitions. For the rigid

occupations we set the index to 0.10 which allows for the small amount of remote work that

we observe in the data for these groups. The ten share parameters {ξjc , ξjs} in the intermediate

goods production function are set to match the occupational labor income shares in the c

and s sectors reported in Table 4. The capital share parameters αc and αs are set to replicate

an aggregate labor share of 0.60, with the ratio of labor shares in the two sectors calibrated

to 1.54, as estimated from BEA data and described above.

The elasticity of substitution across occupations is set to 1.25 in both sectors. With this

value, the drop in labor earnings of the five occupations in our baseline experiment matches

closely the drops observed in US data between March and May (source: Monthly CPS). We

set the within-sector elasticity of substitution across intermediate goods producers in both

sectors to 10 (ϵc = ϵs = 10).

The functional form for the capital adjustment cost is ϕ(ι) = 1
δkϑ

(ι − δk)
2. We set ϑ,

which measures the elasticity of the investment rate to (small changes in) the shadow price

of capital, to 4. This value yields a drop in investments around 10% in Q2:2020, in line with

the aggregate U.S. data.22 The annual depreciation rate on capital δk is set to 10%.

22Series: Private Non-residential Fixed Investment (PNFI) in FRED, https://fred.stlouisfed.org/.

21

https://fred.stlouisfed.org/


E CF CR SF SR
Median net liquid wealth ($) 1,312 18,375 1,013 8,916 875
Share of Hand-to-Mouth 0.453 0.272 0.465 0.327 0.499
Share of Poor HtM 0.186 0.069 0.195 0.097 0.255
Share of Wealthy HtM 0.267 0.203 0.270 0.230 0.244
Liquid rate wedge (%) 0 0.2 -0.7 1.2 -1.0

Table 5: Median net liquid wealth holdings, and hand-to-mouth (HtM) shares by occupational
group. Source SIPP, Waves 1-4 2014.

3.2.2 Households

Asset returns and transaction costs We choose the following function form for house-

hold transaction costs:

χ (d, a) = χ1

∣∣∣∣da
∣∣∣∣χ2

a. (20)

The restriction (χ1 > 0, χ2 > 1) ensures the function is increasing and convex in d. Under

these assumptions, deposit rates are finite, |dt| < ∞, and hence individual’s holdings of

assets never jump.23

We choose the two parameters of the transaction cost function (χ1, χ2) to generate a total

share of hand-to-mouth households of 40%, of which two-thirds are wealthy hand-to-mouth

households as in the 2016 Survey of Consumer Finances (SCF 2016). In both model and

data, we define a household as hand-to-mouth if its holdings of liquid wealth are less than

$1,000 and as wealthy hand-to-mouth if, in addition, its holdings of illiquid wealth are more

than $1,000.24

We choose the real interest rate on liquid assets rb to match an overall median holdings

of liquid wealth of $3,500 (SCF 2016). The annualized calibrated value of rb is 2.8%.

In our model, the main determinant of whether households are able to weather income

shocks is their holdings of liquid wealth. It is thus important that the model is consistent with

heterogeneity across occupations in liquid wealth. Table 5 shows median net liquid wealth

for each of the five occupation groups, together with the share of total, poor and wealthy

hand-to-mouth households in each group. Since the publicly available SCF micro-data does

not contain detailed occupation information, these statistics are based on data from the

23Scaling by illiquid assets a delivers the desirable property that marginal costs χd(d, a) are homogeneous
of degree zero in (d, a) so that the marginal cost of transacting depends on the fraction of illiquid assets
transacted, rather than the raw size of the transaction. Because the transaction cost is infinite at a = 0, for
computational purposes we replace the term a with max {a, a}, where the threshold a > 0 is a small value
(around $500) that guarantees costs remain finite even for individuals with a = 0.

24Our definitions of liquid and illiquid net worth are the same as in Kaplan et al. (2014) and Kaplan et al.
(2018). Net liquid wealth is defined as banks deposits plus directly held mutual funds, stocks and bonds
times an adjustment of 5% of liquid assets for cash holdings (not recorded in the SCF) net of credit card
debt. Net illiquid wealth is the sum of housing net worth and wealth in retirement accounts, plus other
small items like CDs and life insurance.
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Survey of Income and Program Participation (SIPP Waves 1-4, 2014).25 Table 5 reveals

that workers in rigid and essential occupations are significantly more financially vulnerable

than those in flexible occupations. To match this heterogeneity in median liquid wealth,

we introduce an occupation-specific wedge in the liquid rate which should be interpreted as

a reduced-form catch-all for heterogeneity in financial sophistication, intermediation costs,

informational frictions, structural barriers to financial markets and behavioral phenomena.

We normalize the wedge for essential workers to zero.

The aggregate quarterly MPC in the model is 0.14. As extensively discussed in Kaplan

and Violante (2020), it is the combination of uninsurable risk and two-asset structure that

enables the model to simultaneously generate a large amount of aggregate net worth and a

high aggregate MPC (roughly 10 times the MPC in a representative agent model) without

preference heterogeneity.

Preferences We choose the discount rate ρ to replicate a ratio of total illiquid net worth

to annual GDP of 4.5 (SCF 2016) which, in turn, implies a steady-state annualized value of

ra = 0.05.

We assume the following functional form for period utility U(c, υs(Ḋ)s, h)−V (υℓ(Ḋ)ℓw, ℓr, ℓh)

in (5)

U(c, υs(Ḋ)s, h) =
c1−γ

1− γ
+ φs

s̃1−γ

1− γ
, s̃ =

(
υs(Ḋ)s

θ−1
θ + h

θ−1
θ

) θ
θ−1

(21)

with γ, φs > 0 and θ > 1 and

V (υℓ(Ḋ)ℓw, ℓr, ℓh) = φℓ
ℓ̃1+ζ

1 + ζ
+ φhh, ℓ̃ =

(
υℓ(Ḋ)ℓ

1+η
η

w + ℓ
1+η
η

r

) η
1+η

(22)

with ζ, φℓ, φh > 0 and η ≥ 0.

We set γ = 1.26 We choose φs so that the output share in the s sector is 26%. Estimates

of the elasticity of substitution between market consumption and home, θ, using micro

data typically obtain values just below 2 (e.g., Aguiar and Hurst, 2007a). We set θ = 2

because s goods are arguably more substitutable with home production than the whole

market consumption bundle. The shifters υs and υℓ are normalized to one in steady-state.

25We can construct measures of liquid and illiquid wealth in the SIPP that are very close to those in
the SCF. We define hand-to-mouth households as described above for the SCF. The total share of HtM
households in SIPP is 40%, and the fraction of wealthy HtM among these is around 60%, consistent with
the SCF. Median household liquid wealth in SIPP is somewhat smaller than in the SCF, so we rescale all
SIPP observations by a constant factor to match the SCF median. See Appendix B.2 for details.

26Note that 1/γ denotes both the intertemporal elasticity of substitution for both consumption goods and
the static elasticity of substitution between c and the composite (s, h) bundle. To assess whether the latter
elasticity is in the right ballpark, we construct quantities and price indexes for c and s goods for the US
economy from 1947 to 2019. Time-series regressions of log relative quantities on log relative prices also yield
an elasticity around one. See Appendix B.3 for details.
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We set the Frisch elasticity of labor supply 1/ζ to 1. The parameter η governs the degree

of substitution between supplying labor remotely and in the workplace. When η → ∞,

workplace and remote hours are perfect substitutes in preferences. We normalize the time

endowment to one and set (φℓ, φh, η) to match three moments about hours worked: (i) total

market hours ℓw + ℓr equal to 0.34; (ii) remote market hours as a share of total market

hours ℓr/(ℓw+ ℓr) equal to 0.10; (iii) home production hours as a share of total hours worked

ℓh/(ℓw + ℓr + ℓh) equal to 0.18. The first two moments are taken from Aguiar and Hurst

(2007b, Table 2). The third moment is computed from the most recent wave of ATUS for

2019.27

Finally we set the exogenous level of consumption of the two goods (c, s) for the critically

ill to 0.14, which is roughly 20% of average consumption expenditures.

Optimal labor supply Lemma 1 in Appendix A characterizes optimal decisions for the

three types of labor supply and three types of consumption goods. With our specification

for the disutility of labor in (22), the optimal share of workplace hours in total market hours

in the absence of a lockdown is given by

sw :=
ℓw

ℓr + ℓw
=

υℓ(Ḋ)−η

υℓ(Ḋ)−η + ϕη
, (23)

where ϕ is the individual’s occupation flexibility index and υℓ(Ḋ) is the additional disutility

of workplace hours due to the virus.

The share of workplace hours is decreasing in flexibility ϕ and equals one if ϕ = 0, so

that individuals in fully rigid occupations only work onsite. Whenever ϕ > 0, this share

is decreasing in disutility υℓ(Ḋ), so individuals substitute toward remote work when deaths

from the virus increase. The size of both of these margins of substitution is governed by the

elasticity parameter η. It follows from (23) that the labor lockdown constraint (13) binds

whenever κj
ℓ is less than this unconstrained share of workplace hours. Symmetric expressions

hold for demands for social and home-produced goods.

Feedback from virus to economic activity We parameterize the disutility functions

that govern feedback from the virus to the economic decisions using the functional forms,

υs(Ḋ) = exp
(
−ν0

s Ḋν1s

)
, υℓ(Ḋ) = exp

(
ν0
ℓ Ḋν1ℓ

)
. (24)

One advantage of these functional forms is that the disutility of workplace hours con-

nects directly to calculations of the value of a statistical life (VSL). Re-arranging the static

27Bick and Blandin (2020) estimate similar numbers for the pre-lockdown period.
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optimality condition for labor supply we obtain the relationship

logwit = γ0
ℓ

(
ν0
ℓ Ḋ

ν1ℓ
t

)
+ γ1

ℓXit, (25)

where β0 = η(1+ζ)
1+η

and Xit is a vector of individual correlates, that includes hours worked

and consumption. The relationship between the hourly wage and death rate in equation (25)

can be interpreted as a compensating differential for fatality risk, and is the foundation for

most empirical estimates of VSL (see Kniesner and Viscusi, 2019, for a survey).

The specification in (24) allows for a nonlinear effect of fatality risk on compensating

wage differentials. This nonlinearity is important in our context because death rates at the

peak of the pandemic, when the ICU constraint binds, are one to two orders of magnitudes

larger than the average fatality risk in a typical occupation.28 When ν1
ℓ < 1, the wage

premium demanded in exchange for additional risk increases less than linearly with the level

of death risk. This property, which implies that the VSL is decreasing in the level of fatality

risk, is consistent with empirical evidence from high-risk occupations.29

We set the disutility parameters for workplace hours to ν0
ℓ = 8.0 and ν1

ℓ = 0.6 to match a

VSL of around $10M for quarterly death rates of the order of 1/10,000 and a VSL of around

$4M for quarterly death rates of the order of 1/1,000, based on the estimates in Lavetti

(2020). Appendix B.4 contains further details of this calculation.

We set the curvature parameter for the disutility of social consumption to be the same

as the curvature for workplace hours, ν1
s = ν1

ℓ = 0.6. We choose ν0
s = 16 to obtain the

same percentage declines in workplace hours and social consumption from the behavioral

feedbacks during the pandemic.

Wage dynamics The stochastic component of individual productivities zijt for an indi-

vidual i in occupation j follows a jump-drift process in logs. Jumps arrive at a Poisson

rate λzj. Conditional on a jump, a new log-productivity state z′ijt is drawn from a Normal

distribution with mean zero and variance σ2
zj, z

′
ijt ∼ N (0, σ2

zj). Between jumps, the process

drifts toward zero at rate βzj. Formally, the process for zj,it is

dzijt = −βzjzijtdt+ dΛjt,

We estimate the parameters {λzj, σzj, βzj} using data on household wages from the PSID

28In 2020:Q1 there were around 100,000 COVID-19 related deaths in the US. This corresponds to an
average fatality risk of 1/2,500, compared to an average quarterly fatality risk in typical VSL calculations
of 1/100,000.

29Greenstone et al. (2014) emphasize non-linearities in the context of risky military occupations such as
infantry, and Lavetti (2020) estimates non-linearities in the context of Alaskan fisheries, which have the
largest death rate across all US civilian occupations (around 1/1,000 quarterly).
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Moments Essential C int-Flex C int-Rigid S int-Flex S int-Rigid
Variance (lag 0) 0.229 0.322 0.235 0.314 0.311
Variance (lag 2) 0.115 0.126 0.124 0.141 0.130
Kurtosis (lag 2) 9.87 8.85 7.77 8.61 8.74
Total observations 10,2507 83,473 30,002 14,994 40,712

Parameters Essential C int-Flex C int-Rigid S int-Flex S int-Rigid
λzj 0.0346 0.0365 0.0649 0.0346 0.0425
σzj 0.736 0.790 0.627 0.814 0.764
βzj 0.0348 0.0315 0.0481 0.0390 0.0338
Years btw shocks 7.23 6.85 3.85 7.22 5.89
Half life of shocks 19.9 22.0 14.4 17.8 20.5

Table 6: Top table. Panel-data moments estimated on PSID biannual data 1997-2017. Dingel
and Neiman (2020b) occupation classification. Bottom table: Parameter estimates via minimum
distance. The parameters are expressed at quarterly frequency, the model period.

(1997-2017).30 We classify households in the PSID into the five occupation groups based

on the occupation of the main earner in the household. For each occupation, we compute

the following moments: (i) variance of log earnings, (ii) variance of 2-year log change in

earnings and (iii) kurtosis of 2-year log-change in earnings. These moments are sufficient for

identification (see Kaplan et al. (2018)). We estimate the parameters by minimum distance.

The empirical moments and parameter estimates for each occupation group are reported

in Table 6.

3.2.3 Government

The government supplies all the liquid assets in the economy in the form of risk-free govern-

ment debt. Given our calibration of household liquid assets, steady-state government debt

Bg is 58 percent of annual GDP.

We set the proportional labor income tax rate to τ = 0.25 and assume that in steady-state

the transfer function T (·) is lump-sum and equal to 5 percent of output, which is equivalent to

around $7,000 per household per year. In steady-state, 23 percent of households receive a net

transfer from the government. Expenditures are determined residually from the government

budget constraint.

30We define household wages as household labor income divided by household hours worked. Our definition
of labor income includes wages, commissions, overtime, and bonuses. We restrict our sample to household-
year observations with at least 520 hours worked and with an hourly wage above the federal minimum wage
for that year.
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Parameter Value Moment to Match Value
Technology
Sectoral TFP Zc = Zs 1 Normalization –
Labor share in C sector αc 0.59 Labor share in C sector (BEA) 0.53
Labor share in S sector αs 0.90 Labor share in S sector (BEA) 0.81
Elast. of subst. across occup. σc 1.25 Earnings drop across occup. in Q2 (CPS) –
Elast. of subst. for intermediates ϵc = ϵs 10 Profit share 0.10
Depreciation rate δk 0.10 External –
Elast. of inv. to price of K ϑ 4 Investment drop in Q2 (BEA) 10%

Transaction costs
Scale of transaction cost χ1 0.32 Total Share of Hand-to-Mouth (SCF) 0.40
Convexity of transaction cost χ2 1.27 Share of Wealthy Hand-to-Mouth (SCF) 0.26

Preferences
Discount rate (annualized) ρ 0.025 Illiquid wealth-income ratio (SCF) 4
IES 1/γ 1 External –
Weight on S good φs 1.31 Share of value added in S sector (BEA) 0.26
Elasticity of substitution (s, h) θ 2 External –
Preference shifters υℓ = υs 1 Normalization –
Frisch elasticity 1/ζ 1 External –
Elasticity of substitution (ℓw, ℓr) η 83.0 Hours worked remotely (ATUS) 0.10
Weight on remote market work φℓ 9.94 Hours worked in the market (ATUS) 0.34
Weight on home work φh 3.56 Hours worked at home (ATUS) 0.18
Consumption of the critically ill c, s 0.14 External –

Government
Labor income tax τ 0.25 Tax revenues 0.15 ·GDP
Lump-sum transfer T 0.05 Transfers to households 0.05 ·GDP
Government debt (liquid wealth) Bg 0.58 Liquid wealth held by hh (Flow of Funds) 0.58 ·GDP

Table 7: Summary of some of the parameter values and targeted moments for technology, trans-
action costs, preferences, and government. Remaining ones are reported in Tables 3-6. Quarterly
GDP is normalized to 1 in the model.

4 Numerical Experiments

We organize our experiments around three scenarios. In Section 4.1, we consider a Sweden-

like ‘laissez-faire’ scenario without government intervention. We use this scenario to develop

a baseline counterfactual in which behavioral feedback is the only force limiting the spread

of the virus. In Section 4.2, we consider a US-like scenario that includes the type and

duration of lockdown that was observed in the United States, but without any economic

stimulus package. We use this scenario to compare the trade-offs between economic and

health costs under counterfactual lockdowns of different lengths and intensities. In Section

4.3, we consider a scenario that includes the complex economic stimulus program enacted

by the US government, in addition to the lockdown. We use this scenario to analyze the

effect of each component of the stimulus program on the trade-off, to examine the effects of

counterfactual stimulus programs, and to interpret the observed time-series of consumption

27



for different types of households. Finally, in Section 4.4 we consider the effects of smart

containment and stimulus policies that can improve the trade-off between lives and economic

welfare.

Government finances during the pandemic We assume that the monetary authority

has access to a storage technology for final goods, and has accumulated a sufficient quantity

of goods to provide short-term financing to the government during the pandemic. The

monetary authority uses these goods to buy the additional government debt that is needed

to cover the shortfall in tax revenues and finance the stimulus program. This assumption is

intended to capture the role of central banks in preventing the sharp rise in governments’

borrowing costs that would be required if the private sector had to absorb the additional

debt.31 In the long-run, we assume that the government repays the additional debt it issues

during the pandemic by smoothly raising the labor income tax rate.

Economic welfare costs We measure the economic welfare costs of the pandemic us-

ing compensating variation in liquid wealth. Consider a particular pandemic scenario that

includes a specification of both lockdown and stimulus policies. Fix an individual at a

particular point in the state space (a, b, z, h, j) in the initial steady-state. We measure the

economic cost of the pandemic for this individual as the size of the one-time liquid wealth loss

that would make them indifferent between experiencing and not experiencing the pandemic.

Denote the individual’s steady state value function by V̄ and the value function immediately

after the onset of the pandemic by V0. The economic welfare cost is given by the value of

Ω(a, b, z, h, j) that solves

V0(a, b, z, h, j) = V̄(a, b+ Ω, z, h, j).

We report this compensating variation as a multiple of each individual’s steady-state

monthly disposable income (after tax earnings + asset income + transfers). This yields a

distribution of economic welfare costs across households, which we use to summarize the

distributional consequences of the pandemic. We measure the aggregate economic costs of

a pandemic scenario as the mean or median of this distribution of income multiples.

4.1 Laissez-Faire Scenario

In this section we examine a scenario without any government-mandated lockdown or fiscal

stimulus. This scenario forms a useful counterfactual benchmark with which to compare

31For a description of central banks’ responses to the pandemic, we refer to https://research.stlouisfed.
org/publications/economic-synopses/2020/04/21/central-bank-responses-to-covid-19.
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Figure 4: Laissez-faire counterfactual: dynamics of key variables

alternative policy interventions, and should not be used to compare model predictions with

data.

Aggregate dynamics Figure 4 displays the aggregate dynamics of key epidemiological

and economic variables. We will use versions of this figure to describe each alternative

scenario that we examine.32

The top row of Figure 4 displays epidemiological variables: the basic reproduction number

32In all experiments aggregate output, consumption and investment are expressed in real terms by using

their respective deflators. For example, the consumption deflator is p
expshst
st , where expshst is the household

expenditure share on goods s at date t, since (i) the price of regular consumption is normalized to 1 at all
t and (i) the consumption aggregator in preferences is Cobb-Douglas. The deflator for output is analogous,
but with the share of s in value added instead of expenditures. The investment deflator is one at all times.
Equity price and labor earnings are deflated with the consumption price index.
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R0(t), the effective reproduction number R0(t) × St, the fraction of infectious individuals

It/Nt, the death rate Ḋt and a counterfactual death rate in the absence of constraint on

ICU capacity. This latter variable helps to see the number of additional deaths that are due

to the ICU constraint binding.

Without a lockdown, infections would peak at around 1.5% of the population (around

3.75 million) in May. At this level of infections, the ICU constraint binds. Total cumulative

deaths are about 0.3% of the population, but would be less than half without the ICU

constraint. The high level of deaths at the peak of the pandemic triggers a strong behavioral

response, which leads to a rapid decline in the basic reproduction number R0, from 2.5 to

below 1 within the first two months. The effective reproduction number also drops below 1,

and then remains roughly constant at or just below 1 for the remainder of the pandemic, in

line with microfounded models of voluntary social distancing.33

The remainder of Figure 4 shows key macroeconomic aggregates. Aggregate output falls,

with the majority of the drop concentrated in the social sector, due to the endogenous

reduction in demand for social goods. The initial contraction is severe and short-lived, but

the recovery is slow: a year later the economy is still 3% below trend. Despite the sharp

drop in social consumption expenditures, regular consumption rises only very slightly for

two reasons. First, households substitute social good spending with more home production

(home hours increase by 50%, panel (g)). Second, labor income decreases sharply (panel(h)).

Also aggregate investment falls (panel (f)) since the shadow value of additional capital is

much reduced due to the preference-driven decline in demand and labor input. Even in the

absence of fiscal stimulus, the large fall in economic activity leads to a considerable budget

deficit and an increase in the debt-to-GDP ratio around 3% (panel (i)).

Occupation dynamics Figure 5 shows the dynamics of labor income (left panel) and

consumption (right panel) for the five occupation groups. There are large differences across

occupations in the extent of the drop in labor income. Workers in the S-intensive rigid (SR)

occupations experience an average fall in labor income of nearly 35%, whereas those in the

C-intensive flexible (CF) occupations experience a decline of only 6%. Both labor supply

and labor demand account for this large difference. Workers in the two rigid occupations

supply fewer efficiency hours of labor when they substitute remote work for onsite work.

The demand for workers in the two S-intensive occupations falls as consumers reduce their

demand for social goods. While both forces are active, the labor demand effect accounts for

a larger fraction of the differential falls in labor income across occupations.

In this laissez-faire scenario, labor income decreases also for essential occupations (by

around 23%) because a substantial fraction of these workers are employed in the production

of social goods and services (see Table 4).

33See e.g. Farboodi et al. (2020) for a discussion of this effect.
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Figure 5: Laissez-faire counterfactual: distributional effects across occupations

The fall in labor income translates into a fall in spending that is ordered in the same

way across occupations but is much more compressed. The decline in total consumption is

driven by the collapse in S-sector consumption for all occupations caused by the behavioral

response to the pandemic. Regular consumption rises slightly, through substitution, only for

the least affected occupations.

Summarizing, in the laissez-faire scenario, both consumption and investment drop sharply.

The decline in consumption is driven by the endogenous reduction in demand for the social

goods. The co-movement between consumption and investment is attributable to a fall in

aggregate productivity caused by workers in rigid occupations (nearly 70% of the workforce)

cutting workplace hours and being less productive while working remotely. The economic

consequences of the virus vary across workers in occupations with different degrees of flexi-

bility and different exposure to the harder-hit S sector.

4.2 Lockdown Scenarios

In this section we examine a scenario with a government-mandated lockdown that mimics

those implemented in the US in the Spring of 2020, but without fiscal stimulus. As with the

laissez-faire scenario, this is a counterfactual scenario that should not be used to compare

model predictions with data.
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Figure 6: The two components of the baseline lockdown

Parameterization of lockdown A lockdown consists of time paths for the constraints

on the share of workplace hours in total market hours for each occupation
{
κj
ℓt

}
t≥0

(see

equation (12)), and on the fraction of the capital stock in the S sector that can be used for

production {κst}t≥0 (see equation (13)). We assume that the workplace labor lockdown does

not affect essential occupations κE
ℓt = 0 but is common across the other four occupations.

Based on the evidence presented in Section 3.1, we calibrate the size of both lockdowns

to generate a 50% reduction in workplace hours and social consumption, relative to mid-

February 2020. Recall that t = 0 corresponds to 1 March 2020. We assume that the lockdown

starts on 1 April 2020 (at t = 1) and lasts until 1 June 2020 (t = 3), after which it is released

quickly and is completely over by end of August 2020 (t = 5). The resulting time paths for

the lockdown parameters are displayed in Figure 6, with the two-month lockdown period

indicated by the grey shaded area. This lockdown scenario is designed to mimic the US

lockdown in the Spring of 2020.34

Aggregate dynamics Figure 7 displays key epidemiological and macroeconomic variables

for the baseline lockdown scenario and Figure 8 contrasts them with the laissez-faire coun-

terfactual. Three features of these dynamics stand out.

First, the initial wave of infections is dampened as a result of the lockdown, with death

rates peaking at around 2.5%, down from 12% in the laissez-faire scenario. This comes at

34At the time of writing in August 2020, it is unclear whether additional lockdowns will be mandated. Our
baseline scenarios assume that there will be no such additional lockdowns, even in the case of a second wave
of infections. It is thus crucial that our results about the future evolution of the pandemic are interpreted
as conditional on this assumption about future lockdown policy. Similarly, all our conclusions in this section
about the efficacy of lockdowns should be interpreted as statements about US-style lockdowns that are
relatively short-lived and released quickly. We will relax these assumptions when we consider alternative
lockdown policies below.
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Figure 7: Counterfactual with lockdown but no fiscal policy: dynamics of key variables

the cost of a deeper and longer recession. Output falls by 17% for around 2 months under

the lockdown, compared with a drop of around 14% for 1 month without the lockdown.

Second, the lockdown leads to a second wave of infections that is as large as the first wave

and is longer lived. Infections start rising again at the beginning of July (t = 4) and reach a

peak around November (t = 8), before slowly tapering off only in the summer of 2021. By

the end of the pandemic, the lockdown reduces the cumulative number of deaths by around

one-third, relative to the laissez-faire scenario. The second wave of infections brings with

it a prolonged double-dip recession that is about half as large as the first. Both drops in

output are concentrated in the social sector. However, in the first contraction investment

also plays a major role, whereas in the second it doesn’t. The reason is that the first recession

is driven by the lockdown which dramatically decreases labor input and, as a result, capital

productivity, whereas the second one is caused by a decline in the demand for the social
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Figure 8: Comparison between laissez-faire and lockdown

sector which is not very intensive in capital.

Third, the distributional implications of the lockdown are different from those of the

laissez-faire. The lockdown is extremely costly for the C-intensive rigid occupations whose

earnings fall by 35%, compared with 12% in the laissez-faire scenario. This is because in the

laissez-faire scenario the demand for regular goods does not fall much so those workers can

continue to produce and be paid. This is true also for the C-intensive flexible occupations,

whose earnings are also affected by the lockdown because of imperfect substitutability across

occupations in production. In contrast, the S-intensive occupations are hit similarly hard in

both cases.

Lockdown decomposition In Figure 9 we decompose the dynamics in the lockdown

scenario into contributions from the social sector and workplace components.

The top row of Figure 9 shows that the workplace labor lockdown is somewhat more

effective at suppressing infections, and hence deaths than the social sector lockdown, but

comes with larger economic cost (compare the red and green lines in the second panel).

The reason is that by limiting the amount of onsite work across the board, the workplace

lockdown prevents those employed in rigid occupations in the C sector from working and,

through imperfect substitutability across occupations, heavily affects total production in a

sector of the economy that accounts for 3/4 of GDP.

The decompositions in Figure 9 also highlight the dynamic trade-offs involved with differ-

ent types of lockdowns. In the absence of further lockdown orders, an initial lockdown that
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Figure 9: Role of different lockdown components

is more effective at lowering infections during the first half of 2020 comes at the cost of not

only a deeper contraction, but also a larger second wave of infections and deeper associated

recession in 2020:Q4, and a slower recovery in 2021 (compare solid orange and dashed green

lines).

Pandemic possibility frontier (PPF) Figure 10 displays a distributional pandemic

possibility frontier that offers a more systematic analysis of the tradeoffs between health and

economic outcomes under different lockdown policies. Each vertical segment on the frontier

corresponds to a lockdown scenario of different length. Longer lockdowns are those towards

the left of the frontier, with fewer total deaths; shorter lockdowns are those towards the right

of the frontier, with more total deaths. The thick dash-dot line traces out the combinations

of mean economic welfare costs and total death rates that are achievable with lockdowns of

different lengths. The shaded regions indicate different percentiles of the economic welfare

cost distribution corresponding to each lockdown length. The laissez-faire and baseline 2-

month lockdown discussed above are indicated on the frontier.

Regardless of the length of lockdown, the economic welfare costs of the pandemic are

large and heterogeneous. In the baseline 2-month lockdown, the average economic welfare

cost is around 3.4 times monthly income, with a 90-10 percentile ratio that ranges from less

than 2.2 times to nearly 4.5 times monthly income. Both the size and heterogeneity in the

economic costs of the pandemic increase with the length of the lockdown. The mean cost of

a 12-month lockdown is nearly 7 times monthly income, with a 90-10 ratio of 4.5 to 8.5 times
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Figure 10: Counterfactuals with lockdown but no fiscal policy: frontier

monthly income. Therefore both mean and dispersion of economic losses roughly double as

the lockdown is extended from 2 to 12 months.35

The non-convex shape of the mean frontier reflects the different mechanisms through

which the lockdown affects the spread of the virus at different durations. Moving from the

rightmost point of the frontier (laissez-faire), the frontier is initially relatively flat, reflecting

the fact that short lockdowns (less than 2 months) induce relatively small economic costs

but drastically reduce deaths. This sizable reduction in deaths is due to two effects of such

short lockdowns: (i) preventing the ICU capacity constraint from binding; and (ii) buying

time for people to learn best-practice behaviors so that R0 falls.

Longer lockdowns (between 2 and 12 months) incur a less favorable trade-off between

deaths and economic welfare, as reflected in the steeper portion of the frontier. This follows

from the epidemiological dynamics inherent in SIR models. In the absence of ICU constraints

and declines in R0, the best that a temporary lockdown can do is to eliminate pandemic

overshoot, i.e. to reach the herd immunity threshold without the virus still circulating

(see e.g. Rachel, 2020; Moll, 2020). This limits the number of lives that can be saved by

lengthening the lockdown, but the economic costs continue to increase steeply with the

duration of the lockdowns.

35Table 9 in Appendix D summarizes cumulative deaths and welfare costs at different points of the pan-
demic possibility frontiers for these experiments as well as all the others in the paper.

36



1 2 3 4 5 6 7 8 9 10
Earnings Deciles

1

2

3

4

(a) Economic Welfare Cost

Laissez-faire
US Policy
US lockdown

4 3 2 1 0 1 2
Economic Welfare Cost

0.00

0.05

0.10

0.15

0.20
(b) Lockdown - Laissez-faire

4 3 2 1 0 1 2
Economic Welfare Cost

0.0

0.1

0.2

0.3

0.4
(c) Fiscal - Lockdown

4 3 2 1 0 1 2
Economic Welfare Cost

0.0

0.1

0.2

0.3

(d) Fiscal - Laissez-faire

Figure 11: Panel (a): economic welfare losses by initial position in the distribution of earnings.
Panel (b): distribution of economic welfare losses (multiples of monthly income) from imposing the
lockdown relative to the laissez faire. Panel (c): from lockdown plus the fiscal stimulus relative to
the lockdown only. Panel (d): from lockdown plus the fiscal stimulus relative to the laissez-faire.

As the arrival of the vaccine nears, additional lives can be saved by relatively short

extensions of the lockdown that incur little additional economic costs. This is why the

frontier flattens as the lockdown is extended beyond 12 months.

Welfare cost distribution Panel (a) of Figure 11 illustrates the distribution of economic

welfare losses across the earnings distribution. Everyone loses from the pandemic, both under

lassez-faire and under lockdown, but households who lose the most, perhaps surprisingly, are

always those in the middle of the distribution. The economic losses of the poorest ones are

limited because the main source of their income is not labor, but government transfers which

remain unchanged. 36

Comparing the green and the blue line in panel (a) reveals that the economic losses of the

lockdown are quite uniform across the distribution. Panel (b) confirms this impression: the

entire distribution of economic welfare losses is compressed between 0.5 and 1.5 of monthly

income, with a mean economic loss around 1.

36Combining this analysis with that of the pandemic possibility frontier implies that households at the
top of the band in Figure 10 are those around the 30th percentile and households at the bottom of the band
are those in the 99th percentile.
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Figure 12: Components of fiscal stimulus package in model

4.3 Fiscal Stimulus Scenario

In this section we add to the lockdown scenario a set of economic stimulus measures that

mimic the Coronavirus Aid, Relief, and Economic Security (CARES) Act. The simulations

in this section are intended to be compared with US data and are our point of departure for

counterfactual stimulus and containment strategies.

Modeling the CARES act We focus on the four most important components of the

CARES act for household welfare. Appendix C contains a detailed description of these

different stimulus policies and how we incorporate them in our model economy. Here we

provide only a summary.37

(i) The Economic Impact Payments (EIP) program consisted of one-time stimulus

payments with amounts which depended on family size and were phased out at high

income levels. To match the total outlays reported by the Department of Treasury

($260B), we set the payment per household to $1,900. We model these payments as

flow transfers paid out evenly over 1.5 months. This allows us to capture delays that

occurred during the rollout of the program and heterogeneity in the exact timing of

the payments.

(ii) Several expansions to the Unemployment Insurance (UI) program consisted of

additional payments to unemployed workers and extended eligibility. We model UI

as transfers that compensate for the shortfall of individuals’ labor incomes relative to

their steady state values, based on the replacement rates calculated by Ganong et al.

(2020). For low-income households these replacement rates exceeded 100%.

37The CARES act was passed by Congress at the end of March. In our simulations, we assume that the
policy is implemented on April 15.
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Figure 13: Lockdown plus fiscal stimulus: dynamics of key variables

(iii) The Paycheck Protection Program (PPP) was intended as an employment sub-

sidy. Some researchers, however, have argued that PPP may not have been as effective

at protecting employment as the program’s name suggests (see e.g. Chetty et al., 2020;

Granja et al., 2020) since firms were not required to demonstrate that funds provided

under the program were used to finance payroll expenses for workers that would have

been otherwise laid-off. We therefore model the PPP as part wage subsidy and part

profit subsidy (ςwt, ςπt in the model), with each component amounting to 50% of the

PPP’s $669 billion budget.

(iv) Tax penalties for retirement account withdrawals were temporarily waived and

withdrawal limits were relaxed. We model this policy as a reduction in the scale

parameter χ1 in the adjustment cost function in equation (20).

Figure 12 plots the magnitudes and timing of these four elements of the CARES act that

we feed into the model. In line with the data, components (ii)-(iv) expire on August 1st.
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Figure 14: Effect of different stimulus components

CARES act decomposition Figure 13 displays the analogous aggregate dynamics to

those in Figures 4 and 7 for the model with fiscal stimulus. Figure 14 plots a subset of

these variables alongside their counterparts in the scenario with a lockdown but no stimulus,

together with an intermediate stimulus package that contains only the EIP payments and

expanded UI benefits.

The top two panels in Figure 14 show that the stimulus package has barely any effect

on the initial dynamics of the virus. However, the effective reproduction number is slightly

lower in the second wave, which just prevents the ICU constraint from binding and lowers

fatalities in the second wave. The reason for the lower transmission rate is that the PPP

raises asset prices. The higher asset prices lead people to work fewer hours in the workplace

due to a wealth effect. Lower workplace hours leads to fewer infections

The impact of the stimulus package on economic aggregates is substantial. Both the

transfer programs (EIP, UI) and PPP boost aggregate consumption throughout the lock-

down and in its immediate aftermath. We revisit these effects on consumption below in

our discussion of the distributional dynamics of consumption. The CARES act boosts con-

sumption by around 6 percentage points, with about 4 points coming from PPP and the

remainder from UI and EIP.

Because we model the PPP as part labor subsidy and part profit subsidy, its two main

effects are on labor income and firms’ profitability. Figure 14(b) shows that PPP reduces

the fall in labor income by around half, and Figure 14(f) shows that the fall in the stock

market by around 4 percentage points.

The costs of the stimulus package can be seen in the large increase in government debt

Figure 13(i). After eighteen months the debt-GDP ratio increases by about 12% above its
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Figure 15: Lockdown plus fiscal stimulus: distributional frontier

pre-pandemic level, compared with an increase of 3% without the CARES act.

Pandemic possibility frontier Figure 15 displays the pandemic possibility frontier for

lockdowns of different lengths in the presence of the stimulus package. The stimulus package

does not alter the shape of the frontier, but it shifts down the frontier and widens the

distribution of economic costs, especially for short lockdowns, by substantially lowering the

welfare losses for about a quarter of households.

This comparison is most clearly seen in Figure 1 in the Introduction. The downward shift

in the frontier reflects the role of the stimulus package in raising household consumption.

The stimulus package lowers the average economic cost of the lockdown by around 20%,

from 3.4 times monthly income to 2.7 times monthly income. The success of the policy is

the mirror image of the failure of Ricardian equivalence in the model.

The top-right panel of Figure 11 reports the distribution of welfare losses (negative num-

bers are gains) from the combination of lockdown and fiscal stimulus relative to a scenario

without fiscal stimulus. Almost all households gain from the CARES Act. The top-left panel

of the figure clarifies that gains are concentrated below the median. The CARES act was

highly redistributive. It is especially interesting that the poorest tercile of the distribution is

economically better off even compared to laissez-faire (these are the households with negative

values in the bottom-right panel). Thus, under the combined lockdown and fiscal stimulus

policy, the bottom quintile of the earnings distribution are better off in terms of both lives

41



Apr Jul Oct 2021 Apr Jul
Month

30

20

10

0

(a) Labor Income (%)

Bottom Quartile
2nd Quartile
3rd Quartile
Top Quartile

Apr Jul Oct 2021 Apr Jul
Month

20

15

10

5

0

(b) Consumption (%)

Bottom Quartile
2nd Quartile
3rd Quartile
Top Quartile

Figure 16: Labor income and consumption across pre-pandemic income distribution

and economic welfare than in the laissez-faire scenario.

Distribution of consumption and earnings We can use our model to interpret recent

empirical evidence on household labor income and consumption in the early stages of the

pandemic in the US. Cajner et al. (2020) find that labor incomes have fallen most for house-

holds at the bottom of the income distribution and have remained low. These households

disproportionally work in hospitality and other rigid, S-intensive occupations. At the same

time, Cox et al. (2020) and Chetty et al. (2020) find that consumption expenditures of poor

households have recovered more quickly than expenditures of rich households.

Our model reproduces these apparently contradicting patterns of consumption and labor

income, and offers an intuitive explanation. Figure 16 displays the paths of average labor

incomes and consumption in each quartile of the income distribution, over the first four

months of the pandemic. As in the data, in the model labor incomes fall most for the lowest

quartile of the pre-pandemic income distribution and remain persistently low. Also as in the

data, the drop in expenditures is much more uniform across the distribution, but recovers

fastest for the households in the bottom quartile. The reason, as illustrated in Figure 17, is

that the stimulus package had very heterogeneous effects across the income distribution.

Figure 17 decomposes the dynamics of labor income, total income and consumption into

contributions from each major component of the stimulus program, for the top and bottom

quartiles of the income distribution.

Panels (a) and (d) shows PPP leads to earnings gains for workers across the income

distribution. UI benefits, instead, slightly disincentivizes labor supply at the bottom of the

distribution, where replacement rates widely exceeded 100%. Together, the CARES act

mitigated the fall in earnings for all workers, but the drop in labor earnings was still at least
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Figure 17: Effect of different stimulus components across pre-pandemic income distribution

10 percentage points deeper at the bottom of the earnings distribution. Panels (b) and (f)

show the stark contrast in the dynamics of total income (including fiscal transfers) between

the top and bottom quartiles of the income distribution. Through the lens of our model, the

combined effect of the various elements of the CARES Act is that income-poor households

experienced large increases in their total incomes.38 Since many of these households are

liquidity constrained, their consumption expenditures follow income closely: they first fall

and then rise (panel (c)). Richer households are rarely liquidity constrained and, as a result,

display more pronounced forward-looking behavior. Because the economic outlook is bleak,

these households cut consumption and save a larger fraction of their income, including the

additional one from the government. These patterns are consistent with empirical evidence

in Baker et al. (2020) and Coibion et al. (2020a) that recipients of stimulus checks consumed

a sizable fraction of them in the first weeks after receipt, and that households with lower

earnings, greater income drops, and lower levels of liquidity displayed stronger spending

responses.

38When interpreting the large percentage increase it is important to keep in mind that the average starting
income of this population group is very low, so large percentage increases still corresponds to small absolute
amounts.
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4.4 Smart Containment and Fiscal Policies

So far, we have only analyzed workplace and social sector lockdowns as policies to contain

the virus. These forms of blunt lockdowns have been the main policy instrument used by

the U.S. and other countries to contain the spread of the virus.39 Blunt lockdowns have the

advantage of being both (i) quickly implementable, and (ii) effective at rapidly curtailing

infections when ICU use is near capacity. In the initial phase of an unexpected epidemic they

are thus a sensible policy response. However, blunt lockdowns also have the disadvantage

of being costly in terms of economic welfare, in the absence of adequate social insurance

provision. Are there other instruments that can achieve a better trade-off between lives and

the economy, as measured by a flatter and more inward locus for the pandemic possibility

frontier? In this section, we explore three alternatives.

Smart exemptions from workplace lockdown As with the lockdowns implemented in

the U.S. and most of Europe, the workplace lockdown in our baseline scenario applies to all

non-essential business, including firms in the C-sector. However, based on the findings of

Section 4.2, an economy-wide workplace lockdown might be excessive.

Panel (b) in Figure 18 plots the pandemic possibility frontier (PPF) for a workplace

lockdown that exempts C sector businesses and allows their employees to work on-site. The

main effect of this loosening is to change the labor supply of workers in rigid C-intensive

occupations. Panel (a) shows how the PPF compares to the PPF in the full lockdown

scenario. This looser lockdown generates a flatter PPF, particularly at long durations. But

even with only a 2 months lockdown, this looser lockdown would have saved roughly the

same number of lives with 10% lower welfare costs. One limitation of the looser lockdown,

however, is that the maximum achievable reduction in deaths is smaller than for the full

lockdown.

Pigouvian taxes rebated smartly The virus generates a negative externality: individ-

uals do not internalize that when they consume social goods or work in the workplace, they

risk contracting the virus, which imposes costs on other individuals. These costs are due

to (i) higher disutility of work and lower utility of social consumption (since these utilities

depend on the average death rate); (ii) higher probability of contracting the virus and being

hospitalized and hence unable to work and consume; and (iii) lower residual ICU capacity

and so possibly higher death rates for the critically ill.

A natural remedy for such negative externalities is a Pigouvian tax on either social

consumption or on-site work.40 However, in a model with heterogeneity and market incom-

39An important exception is the use of border closures in combination of with test and tracing in a handful
countries, such as Australia and New Zealand).

40Note that this is the opposite of the U.K.’s “Eat Out to Help Out” policy, which subsidizes social
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Figure 18: Panel (a): mean pandemic possibility frontier (PPF) for three “smart policies” and
for the baseline lockdown. Each dot on the frontier represents a different duration for the policy.
Panel (b): C-intensive occupations exempted from the lockdown. Panel (c): Pigouvian tax of 30%
on social consumption with revenues rebated to the S-intensive occupations. Panel (d): Pigouvian
tax of 30% on workplace earnings with revenues rebated to the rigid occupations.

pleteness, either tax is particularly bad for a subset of individuals – in the case of a tax on

social consumption, those working in the social sector; in the case of a tax on on-site work,

those in rigid occupations. We offset these costs by rebating the revenues lump-sum to the

affected workers.

Panel (c) of Figure 18 traces the PPF for a 30% tax on social consumption that is kept

in place for different durations. The revenues from this tax are rebated to workers in S-

intensive occupations. So, for example, instead of the government mandating the closure of

restaurants, bars, gyms and hair salons, the government imposes a 30% tax on the sales of

these establishments, and rebates the revenues to both flexible and rigid workers in these

businesses.

The social consumption tax generates a PPF (orange line in panel (a)) that is even

flatter than the PPF from the lockdown with smart exemptions (green line in panel (a)),

consumption.
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with most of the gain in trade-off coming at long durations. However, keeping the tax on

social consumption in place for an extended period leads to extremely unequal outcomes

across the distribution of households. The reason is that although the targeted rebate is

successful at containing the economic losses of workers employed in S-intensive occupations,

the cost of the tax falls heavily on households in C-intensive occupations, especially those

in rigid jobs who cut their workplace hours for fear of contracting the virus.

An alternative Pigouvian tax policy is to impose a tax on hours worked in the workplace

and to rebate the proceeds to workers in rigid occupations. This tax targets the labor supply

margin as the source of the negative externality, as opposed to the social consumption margin.

Panel (d) of Figure 18 traces the PPF for a 30% tax on workplace hours with different

durations. This policy generates the flattest PPF. With a tax on workplace hours in place

for 2 months, the mean economic welfare loss is about 2 times monthly income, which is

about the same as in the laissez faire scenario, but with a substantially smaller number of

deaths – by around 0.1% of the population.

The distributional outcomes of the tax on workplace hours are also unequal at long

durations. Workers in the rigid occupations gain the most from this policy, because it

essentially insures their labor earnings. Workers in the flexible occupations gain the least,

not because of the direct effect of the tax (which they don’t pay because they work from

home), but because their productivity suffers due to the low labor supply of their colleagues

in rigid occupations.

Figure D2 plots PPFs by occupations for all these alternative policy simulations alongside

those for the lockdown scenario with and without fiscal stimulus.

Summarizing, an important lesson from these experiments is that there exist targeted

policies which offer a more favorable average trade-off between lives and livelihoods than

blunt lockdowns. There are two important limitations to these policies which would need

to be addressed if they were implemented in practice. First, targeted lockdown and tax

policies entail a more unequal distribution of economic welfare costs. Second, there are

limits to the total reduction in deaths that can be achieved by different policies, as indicated

by the vertical segments in panel (a) of Figure 18. An example we have explored that

illustrates both of these features is to exclude essential occupation from the tax on workplace

hours in panel (d). With this alternative policy, the dispersion in economic welfare costs

is substantially reduced but so is the maximum possible reduction in deaths that can be

achieved by extending the duration of the tax.

5 Conclusion

We provide a quantitative analysis of the trade-offs between lives and economic outcomes as-

sociated with the COVID-19 pandemic, under the lockdown and fiscal policies implemented
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in the U.S., as well as under alternative counterfactual policy scenarios. We focus on the

distributional implications of these policies across workers and households. Different in-

dividuals have different degrees of economic exposure and vulnerability to the pandemic.

Heterogeneity in exposure is related to the extent to which an individual works in a rigid

occupation and/or and occupation that is used intensively in the production of social goods

and services. Heterogeneity in vulnerability is related to households’ access to liquid sav-

ings and eligibility for government transfers. We find that in U.S. data, the most exposed

individuals are also the most vulnerable, which opens the door to very unequal economic

consequences of the pandemic.

Our model simulations suggest that a representative household perspective of the pan-

demic that ignores this heterogeneity would miss some first-order effects of both the lockdown

and fiscal policies. The economic welfare costs of the pandemic are large and heterogeneous

regardless of the policy response. Even smart containment and fiscal policies that offer a

more favorable trade-off in terms of mean outcomes entail very uneven outcomes. Thus,

whereas most of the emphasis in public debate has been on the extent of the trade-off that

governments face in terms of lives and livelihoods, we emphasize the equally important and

inescapable choice over which parts of the population should carry the heaviest burden of

the economic costs. Through our focus on a distributional pandemic possibility frontier, our

paper offers a framework to integrate these different aspects of the policy trade-offs.

Partly because of a constraint on space, and partly because we are not aware of data that

can be used for calibration, we have not run counterfactuals where some of the funds used

for fiscal support are diverted toward investing in health outcomes. Such investments might

include education campaigns about wearing face masks and physical distancing, widespread

testing and tracing, better treatments for COVID-19 and vaccine development. Through the

lens of our model such investments not only improve health outcomes but also have positive

distributional effects, because more effective suppression of the virus enables workers in rigid

occupations and the social good sector to return to work sooner.

Finally, looking ahead, our model predicts that, in the absence of a tight lockdown in

the Fall of 2020, the U.S. will experience a second wave of the virus and another (milder)

recession: the recovery will be W shaped and very prolonged. Moreover, the distributional

implications of the second wave will be much closer to those observed under our laissez-faire

counterfactual, with the economic costs falling more heavily on the most vulnerable parts of

the population, and thus quite different from the distribution of costs during the first wave

in the Spring of 2020. This discrepancy calls for a distinct, more targeted, policy response.
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Appendix

A Model Appendix

A.1 Labor Supply

As explained in the main text we model a partial lockdown as a constraint on the share of

total hours worked in the market (13).

Lemma 1 Consider an individual with the preferences (22), flexibility ϕ and facing an in-

fection rate Ḋ. The lockdown constraint (13) binds whenever

κℓ ≤
υℓ(Ḋ)−η

υℓ(Ḋ)−η + ϕη

and is slack otherwise. Therefore denote by

sw = min

{
κℓ,

υℓ(Ḋ)−η

υℓ(Ḋ)−η + ϕη

}

the share of hours worked in the market. Total labor effort ℓ̃ satisfies a standard labor supply

condition

φℓℓ̃
νcγ = w̃ where w̃ = w(sw + ϕ(1− sw))Θ, Θ :=

(
υℓ(Ḋ)s

1+η
η

w + (1− sw)
1+η
η

)− η
1+η

(A1)

is a wage index. Workplace hours, remote hours and total efficiency units of labor supplied

by the household are given by

ℓw = swΘℓ̃, ℓr = (1− sw)Θℓ̃, ℓ := ℓw + ϕℓr = (sw + ϕ(1− sw))Θℓ̃ (A2)

When the lockdown constraint is slack, this collapses to w̃ = w
(
υℓ(Ḋ)−η + ϕ1+η

) 1
1+η

and

ℓw =

(
w/υℓ(Ḋ)

w̃

)η

ℓ̃, ℓr =

(
ϕw

w̃

)η

ℓ̃, ℓ =
(
υℓ(Ḋ)−η + ϕ1+η

) 1
1+η

ℓ̃. (A3)

For example with a complete lockdown κℓ = 0, we have Θ = 1 and hence

ℓw = 0, ℓr = ℓ̃, ℓ = ϕℓ̃ w̃ = ϕw
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as expected.

For some occupations, we want to set ϕ = 0. In this limit the constraint binds, sw = κℓ,

and

φℓℓ̃
νcγ = w̃ where w̃ = wκℓΘ, Θ :=

(
υℓ(Ḋ)κ

1+η
η

ℓ + (1− κℓ)
1+η
η

)− η
1+η

ℓw = κℓΘℓ̃, ℓr = (1− κℓ)Θℓ̃

There are two cases: a complete lockdown κℓ = 0 and a partial lockdown κℓ > 0. In a

complete lockdown obviously all ℓ’s are zero and in particular ℓr = 0. In a partial lockdown

ℓr > 0. So this has the somewhat odd feature that even with ϕ = 0 individuals still exert

remote labor effort even though their remote labor is completely unproductive.

A.2 Problem of Critically Ill

We here spell out in more detail the problem of the critically ill, i.e. those in the h = c

health state, briefly discussed in Section 2.2. It complements the problem of individuals in

the h = l health state discussed there (meaning all remaining individuals who are in one of

the S, E , I and R groups and able to work). The main difference relative to the problem of

able individuals is that the critically ill are in the ICU are thus unable to work, i.e. their

labor income is zero. Because they have no labor income we assume that the government

provides them with fixed amounts of regular and social consumption c and s. Their period

utility is therefore

U(c, s, 0)− V (0, 0, 0).

Note in particular that the critically ill do not make any consumption or labor supply choice.

Since the government pays for the consumption needs of the critically ill their liquid and

illiquid assets evolve according to

ḃt = rbtbt + Tt − dt − χ(dt, at) (A4)

ȧt = rat at + dt (A5)

bt ≥ 0, at ≥ 0. (A6)

Note that we do allow for the possibility of the critically ill rebalancing their portfolios by

depositing and withdrawing (dt) but this is the only choice they get to make.
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A.3 Sticky Prices

B Data Appendix

B.1 Details of Occupation Classifications

Our starting point is the 430 occupations classified based on the 5-digit 2010 SOC system.

Employment and average wages for each occupation are computed from the May 2017 Oc-

cupational Employment Statistics (OES) data collected by the Bureau of Labor Statistics

(BLS). The OES collects information on occupations by industry and allows to compute

employment shares and average wages of each occupation in the c and s sector.41

Our occupational flexibility index is the binary “teleworkable” indicator computed by

Dingel and Neiman (2020a) based on O*NET data. The vast majority of their 5-digit SOC

level indeces are either 0 or 1 but, because the indicators are originally constructed at a

higher level of disaggregation, some of them equal 0.25, 0.5 and 0.75. We set the 0.25 to

0 and 0.75 to 1. We reassign either a 0 or a 1 to those equal to 0.5 based on the value

of the teleworkable indicator for the closest occupations.42 To gain confidence that our

classification is robust, we also computed an alternative index of flexibility based on the

American Time Use Survey (ATUS). Our sample consists of respondents to the 2017-2018

ATUS Leave Module. This module by construction excludes all non-workers and all self-

employed workers and has a sample size of 9,456 workers. We classified an individual job

as flexible if the individual responded “YES” to the question (LUJF 10): As part of your

(main) job, can you work at home? We then aggregate these aswers by occupation, using

ATUS-provided weights (LUFINLWGT). This analysis can only be done at the 3-digit SOC

level because of the small sample size of ATUS. Thus, for comparison, we also aggregate

the Dingel-Neiman indicator (no longer binary, but a continuous variable between 0 and

1) at the 3-digit level using employment shares. There is a strong agreement between the

two indeces as seen in Figure B1, a weighted scatterplot of the two indicators across 3-digit

occupations. The employment-weighted correlation is over 0.80.43

The Department of Homeland Security (DHS) published a memo containing a list of

“critical infrastructure workers” (not corresponding to any particular SOC classification,

41A full list of occupations is available here https://www.bls.gov/soc/2018/home.htm. From the initial set
of occupations we exclude major group 55 known as Military Specific Occupations and other 13 occupations
for which reported OES employment for that month is zero.

42There is a handful of occupations (in their Table A.1) in which task-based O*NET indicators differ from
“manually imputed measures based on introspection” by the authors. For those, we use the latter indicator
which seems more reasonable.

43The biggest gaps between the two indicators in each direction are for: Other Education, Training,
and Library Occupations (where the ATUS flexible share is 75 ppt smaller than the O*NET one) and
Occupational Therapy and Physical Therapist Assistants and Aides (where the ATUS flexible share is 75
ppt bigger than the O*NET one).
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Figure B1: Weighted scatterplot of O*NET and ATUS indicators for flexible jobs across 3 digit
occupations.

unfortunately). Tomer and Kane (2020) compiled a list of 121 4-digit NAICS industries

that relates to this DHS list. We map these industries into occupations using the 5-digit

occupational employment-by-industry OES dataset for 2017. Thus, for each of the 443

occupational groups, we obtain the share of critical workers in that group.

The notion of essential occupations relevant to us is that the lockdown does not extend

to those critical workers but, if it did, they would be unable to perform their tasks. Since

flexible occupations are barely affected by the lockdown, as their workers can easily shift

from onsite to remote mode, we define an occupation as essential if it is critical and not

teleworkable. In practice, this group includes Nurses, Flight Attendants, Police Officers,

Subway Operators, Postal Service Workers, etc.44 When we compute statistics for essential

occupations, we average across all occupational group by weighting each of them by their

share of essential workers.

The final data set contains, for each 5-digit occupation, the share of essential workers

(between 0 and 1), a binary indicator for flexibility, together with employment and average

earnings for that occupation in the c and s sector.45

To calibrate the model, we need also need to define ‘C-intensive’ and ‘S-intensive’ for an

occupation. We do it based on its relative labor share in the two sectors (with a threshold

of 1). Finally, we need to further split C-intensive and S-intensive occupations into two

44There exists an alternative definition of critical occupations compiled by the LMI Institute (Vivalt, 2020)
which maps directly into the related 6-digit SOC occupational definitions. mapping directly into occupations,
though, is problematic. For example, according to this definition, Cooks are a critical occupation probably
because some critical infrastructures need cooks e.g. hospitals). In our preferred definition, instead, only
10% of cooks are essential.

45For most occupations, employment is heavily concentrated in one of the sectors. However, for some
(e.g., janitors, secretaries) employment shares in the two sectors are more similar. The employment-weighted
correlation between occupational wage in the two sectors is 0.974.
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groups according to whether they are flexible or not. For this last step, we use the Dingel-

Neiman indicator. This procedure yields a total of 5 occupational groups: essential (j = E) ,

C-intensive flexible (j = CF ), C-intensive rigid (j = CR), S-intensive flexible (j = SF ), S-

intensive rigid (j = SR). For each group, we compute employment share and average wage

as well as sectoral labor shares. Table 4 summarizes these statistics and lists some examples

for these five groups.

B.2 SIPP

We use Waves 1-4 of the 2014 SIPP. For each wave, we select all individuals of age 15 or

older who were present in all 12 months of the wave. The waves are treated separately when

computing all intermediate variables, and then pooled prior to final estimation. We do not

link individuals across waves in any way.

Respondents to SIPP are allowed to provide up to seven distinct jobs, each of with

is reported for the individual months out of the year during which the individual held said

occupation. For each worker-wave pair, we classify a worker as holding a given occupation by

identifying as the primary occupation the occupation code reported in the greatest number

of months. We then assign an occupation to the household based on the occupation of its

primary earner. Since the SIPP occupation codes don’t exactly match one-to-one with the

SOC 5-digit codes (though they are nerly the same): (1) A very small number of 5-digit SOC

categories do not appear anywhere in SIPP. (2) Because of some aggregated SIPP occupation

codes, a handful of occupations are 3-digit occupations not 5-digit. The teleworkable score

is constant across 5-digit occupations within each of these 3-digit categories so there is no

loss of information there.

Individual labor earnings are defined as income earned from all jobs worked during the

month, including wage and salary income, bonus payments, commissions, overtime pay-

ments, tips, other income from self-employed businesses, self-employed business profits, and

accounting for time spent away from a job without pay.

We use the following definitions for assets and liabilities:

Deposits = saving accts + checking accts + money market funds

Bonds = gov bonds + municipal and corporate bonds

Liquid assets = 1.05× (deposits + directly held bonds, stocks and mutual funds)

Net liquid assets = liquid assets− credit card debt

Net illiquid assets = home equity + IRA + Keogh + CDs + life insurance

All estimates are computed based on the provided household-level weight variable for the

2014 SIPP [XYZ].
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B.3 The static elasticity of substitution between c and s

c−γ
t = λtPct (B1)

φℓ (ℓwt)
ζ = λt (1− τ)wtzt (B2)

φs
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θ−1
θ

t + h
θ−1
θ

t

) 1−γθ
θ−1
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− 1

θ
t = λtPst (B3)(
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θ−1
θ

t + h
θ−1
θ

t

) 1−γθ
θ−1

h
− 1

θ
t = φh (B4)

where λt is the multiplier on the budget constraint. Using the second optimality condition

into the first one, rearranging and taking logs we obtain:

log

(
ct
st

)
= const− 1

γ
log

(
Pct

Pst

)
+

γθ − 1

γ (θ − 1)
log

1 +(φℓ (ℓwt)
ζ

φh

· Pst

(1− τ)wtzt

)θ−1
 , (B5)

where the constant is (−1/γ) log (φs) . This equation implies that, in absence of h, the static

elasticity of substitution between c and s would be 1/γ, i.e. equal to to the intertemporal

elasticity. In the presence of h, 1/γ regulates the elasticity of substitution between c and the

(s, h) bundle. Thus in (B5) there is an extra term that reflect the fact that, for given change

in the relative price Pct/Pst, a change in Pst relative to the price of home-production (the

after-tax wage) will also affect the expenditures on s and therefore the ratio of quantities on

the left-hand-side. Recall that γ ≥ 0 and θ ≥ 1, thus the sign of this effect is ambiguous.

When we estimate equation (B5), we abstract from heterogeneity in z. We therefore

replace wtzt with the average hourly wage at date t and ℓwt with average hours worked in

the market at date t. As a result this first-order condition is the same across all households

and we can use aggregate quantities on the left-hand-side, Yct and Yst.
46

From the BEA website, Interactive Access to Industry Economic Accounts Data: GDP

by Industry web page, we obtain value added by industry in nominal terms and chain-type

price indeces for value added by industry from 1963-2019. Let vait be the nominal value

added in industry i. Let Is be the set of industries in s and Ic the set of industries in c, based

on the classification in Table 3. Next, we construct a time series for value added in the c

and s sectors:

V Ajt =
∑
i∈Ij

vait, j ∈ {c, s} .

Let pit be the price index for industry i in year t. We want to compute a price index for

46The series for wages is hourly compensation (PRS85006103). Average hours per person are computed as
the total hours (B4701C0A222NBEA) divided by employment (CE16OV) and multiplied by the employment
to population ratio (LNS12300000). All series were retrieved from FRED, Federal Reserve Bank of St. Louis;
https://fred.stlouisfed.org/series on April 23, 2020.
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1963-2019 2000-2019 HP filter (1963-2019) BK filter (1963-2019)

γ̂ 0.805 (SE 0.136) 0.781 (SE 0.057) 1.387 (SE 0.235) 0.916 (SE 0.159)

Table 8: Alternative estimates of γ.

each sector, call them Pct and Pst. We use a Tornquist index, i.e.

∆ logPjt = log

(
Pjt

Pj,t−1

)
=

1
2

∑
i∈Ij

(
vait
V Ajt

+
vai,t−1

V Aj,t−1

)
log

(
pit

pi,t−1

)
Pjt = Pj,t−1 exp (∆ logPjt) , with Pj0 = 1 (a normalization).

Next, we deflate value added to compute quantities of the c and s goods:

Yjt =
V Ajt

Pjt

, j = {c, s} .

We set θ, τ, ζ, φℓ and φh to our calibrated values. We run 4 separate regressions. In

the first regression we use the entire sample period and add a time trend which captures

low-frequency movements in relative taste for the s good (φs). In the second, we restrict

attention to the most recent years, post 2000. In the last two, we run the regression on

filtered time series to isolate the business cycle component, since we are mostly interested in

short-run substitutability. We use an HP filter (smoothing parameter =100) and a Baxter-

King band-pass filter (2-8 years). The results are presented in Table 8.

All the point estimates for γ are quite close to 1, which is reassuring given our choice of

γ = 1 for the intertemporal elasticity of substitution.

B.4 Calibration of preference feedback using VSL estimates

Recall the meaning of the value of statistical life (VSL). Suppose each person in a sample

of 10,000 people were asked how much they would be willing to pay for a reduction in their

individual risk of dying of 1 in 10,000 over the next quarter. Since this reduction in risk

means that we would expect one fewer death among the sample of 10,000 people on average

over the next quarter, this is sometimes described as “one statistical life saved.” Suppose

that the average response to this hypothetical question is $1,000. Then, the total dollar

amount that the group would be willing to pay to save one statistical life next quarter would

be $1,000 per person × 10,000 people, or $10 million. This is the estimated VSL.

The key object of interest in the VSL literature is the semi-elasticity of hourly wages to
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fatality risk across occupations, i.e. the parameter β0 in the following linear regression:

logwit = β0Ḋit + β1Xit + εit, (B6)

which measures the monetary compensation for a marginal increase in fatality risk of one

unit. For example, assume that the estimated value of β̂0 is 660. To translate this estimate

into a VSL one has to multiply β̂0 by mean quarterly earnings ($15,000) which yields a VSL

of 10M. Empirical estimates of β̂0 of that magnitude are common in this literature, and this

is how the literature arrives at VSL of the order of 10M.47

One issue in mapping existing estimates of β0 for linear models to our framework is that

in our model the relationship (25) is nonlinear in the death rate. Equation 25 implies that

the marginal compensation for an additional unit of risk evaluated at a death rate Ḋ∗ is:

β0(Ḋ∗) =
(
γ0
ℓ ν

0
ℓ ν

1
ℓ

) (
Ḋ∗
)ν1ℓ−1

(B7)

and it depends on the level of fatality risk. The implied VSL also depends on the level of the

death rate and is computed by multiplying β0(Ḋ∗) by mean quarterly earnings ($15,000).

As explained in the main text, we want to match a VSL of 10M for a death rate around

1/10,000 per quarter and a VSL around 4M for a death rate around 1/1,000 per quarter

based on the estimates in Lavetti (2020). Given γ0
ℓ = η(1+ζ)

1+η
= 1.99, these two moments can

be matched with the pair ν0
ℓ = 8 and ν1

ℓ = 0.6.

C Details on Fiscal Stimulus Package in Data andModel

The Coronavirus Aid, Relief, and Economic Security Act, also known as the CARES Act

was passed by U.S. Congress and signed into law by President Trump in late March 2020 in

response to the economic fallout of the COVID-19 pandemic. It included several elements

directed to cushioning the economic consequences of the contraction on households.

The Economic Impact Payments (EIP) program consisted of stimulus transfers with

amounts which depended on family size and were phased out at high income levels: $2,400 to
each married couple filing jointly or $1,200 to each individual, and $500 for each dependent

child under age 17. Those with adjusted gross income over a threshold received a reduced

amount. The initial amount is reduced by 5% of adjusted gross income over the threshold.

The threshold for those filing as single or married filing separately is $75,000; for those filing
as head of household, the threshold is $112,500; and for married filing jointly, the threshold

is $150,000. The total outlays reported by the Department of Treasury was $260B.
47Often, in empirical regressions the death risk is expressed per 10,000 units. In this case the equivalent

estimate of β0 would be 0.066 and to obtain a VSL of 10M one has to multiply β̂0 by mean quarterly earnings
($15,000) times by 10,000.
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Based on these features, in the model, we phase out this program at the 95th percentile

of income, and set the size of the payment per household to $1,900 in order to match total

outlays.

We model these payments as flow transfers paid out evenly over 1.5 months starting from

mid April. This allows us to capture delays that occurred during the rollout of the program

and heterogeneity in the exact timing of the payments. See, e.g. https://www.cbsnews.com/

news/stimulus-check-delays-payment-status-not-available/.

The CARES Act included several expansions to the Unemployment Insurance (UI)

program. Federal Pandemic Unemployment Compensation (FPUC) entails an additional

$600 per week for those already receiving unemployment benefits. Pandemic Emergency

Unemployment Compensation (PEUC) adds an extra thirteen weeks of benefits for those

who have exhausted unemployment benefits. Pandemic Unemployment Assistance (PUA)

broadens eligibility to any individual who is out of work due to the pandemic, including

formerly self-employed, contract, and gig workers ordinarily excluded from UI.

We model UI as transfers that compensate for the shortfall of individuals’ labor incomes

relative to their steady state values, based on the replacement rates by earnings decile cal-

culated by Ganong et al. (2020, Figure 3). Let y(j, z) be the average earnings (where the

dispersion comes from heterogeneous wealth holdings) for workers in occupation j with in-

dividual productivity z. Let the¯symbol denote steady-state. Let ρ(j, z) denote the replace-

ment rate. When the policy is implemented, at date t along the transition the cum-benefit

earnings equal max {ȳ(j, z)× ρ(j, z)− yt(j, z), 0}. We assume the program starts in mid

April expires on August 1st.

The Paycheck Protection Program (PPP) is a $669 billion small-business forgivable

loan program which was administered in two tranches of $349 billion and $320 billion. The

initial deadline for application was set to June 30, but it was later extended to August

8, 2020. PPP loans are designed to provide funds to small businesses to maintain their

employment and wage rates similar to pre-crisis levels. The definition of mall business is 500

or fewer employees on average over a year, but it can be higher or lower depending on the

industry. Additionally, sole proprietors, independent contractors, and other self-employed

individuals are eligible for PPP loans.

In order to receive loan forgiveness, firms must have qualifying expenses (payroll, utilities,

rent, and mortgage payments) that are at least as large as the loans. This criterion suggests

that the loans are very likely to be forgiven, which is what we assume.

As explained in the main text, some researchers have argued that PPP may not have

been as effective at protecting employment as the program’s name suggests since firms are

not required to demonstrate that funds provided under the program are used to finance

payroll expenses for workers that would have been otherwise laid-off. Because of this moral

hazard element, we model the PPP as part wage subsidy and part profit subsidy, with each
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component amounting to 50% of the PPP’s budget. Figure 12 illustrates the exact values

for the two subsidy rates, in the model. We assume the PPP starts in mid April expires on

August 1st.

The CARES Act also waived the 10% tax penalty for early distributions from

IRAs, 401(k) plans, and other retirement accounts if the individual or someone in the family

contracts the virus or if the individual experienced adverse financial consequences (e.g.,

layoff, reduced work hours, or inability to work due to child-care needs) because of the virus.

The bill also doubles the maximum amount of a loan from an employer-sponsored 401(k)

retirement plan from $50,000 to $100,000 and allows up to a one-year delay in repayments of

outstanding retirement plan loans. We model this policy as a reduction of 25% in the scale

parameter χ1 in the adjustment cost function in equation (20). We assume this policy is in

place from mid April to August 1st.
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D Additional Tables and Figures

Policy Duration Fatality Economic Welfare Cost
(months) Rate (%) Mean p10 p90 E CF CR SF SR

Laissez-faire – 0.33 2.31 1.29 3.3 2.51 1.63 1.76 2.88 2.71

Lockdown
2 0.23 3.36 2.17 4.46 3.44 2.63 3.04 3.88 3.84
12 0.17 6.68 4.45 8.57 6.4 5.79 7.01 7.08 7.44
17 0.05 7.63 5.05 9.63 7.16 6.86 8.31 7.87 8.43

Lockdown + Fiscal Stimulus
2 0.24 2.7 0.79 4.55 2.91 2.85 2.83 3.38 1.92
12 0.17 5.94 2.88 8.38 5.92 6.11 6.78 6.64 5.07
17 0.05 6.87 3.36 9.58 6.7 7.28 8.12 7.5 5.79

Lockdown C-sector Exempt
2 0.23 3.0 1.86 4.15 3.12 2.34 2.35 3.56 3.54
12 0.18 5.29 3.6 7.07 5.17 4.6 4.24 5.86 6.35
17 0.09 5.87 4.0 7.9 5.63 5.32 4.72 6.36 7.09

Social Consumption Tax
2 0.23 2.87 1.52 4.07 3.59 2.63 3.03 2.81 2.1
12 0.17 4.66 1.04 8.72 7.18 5.88 7.07 2.54 0.01
17 0.04 4.96 −0.37 10.01 8.24 6.99 8.4 1.82 −1.45

Workplace Hours Tax
2 0.24 2.68 1.58 3.7 2.99 2.15 2.43 3.42 2.56
12 0.19 3.93 2.09 5.78 4.6 3.87 4.54 5.26 2.23
17 0.11 4.06 1.97 6.26 4.86 4.36 5.11 5.55 1.59

Table 9: Cumulative death rates and distribution of welfare costs under actual and counterfactual
scenarios considered.
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Figure D1: Model predictions for key epidemiological variables. Panels (c) and (d) plot the
numbers of people for cumulative infections and deaths, interpreting the relevant population as
the U.S. adult population of roughly 250 million people. For example, our model predicts roughly
350,000 COVID-19 deaths by January 1, 2021, broadly in line with epidemiological projections. For
example this number is somewhat below the 410,000 COVID-19 deaths by January 1, 2021 predicted
by the Institute for Health Metrics and Evaluation (IHME), see https://covid19.healthdata.org/
united-states-of-america – website accessed on September 10, 2020.
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Figure D2: Distributional pandemic possibility frontiers by occupation for the five main exper-
iments. Each line traces the mean economic welfare loss for each of the five occupations at any
given cumulative aggregate death count.
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