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1. APPENDIX FOR SECTION 1

1.1. Mapping the Neoclassical Growth Model into Our Setup

As is standard, a representative consumer has preferences
∑∞

t=0 β
tU(Ct) where Ct is

consumption, the consumption good is produced according to a constant-returns technology
Yt = f(Kt,AtLt) where Kt is capital, At is productivity and Lt is labor, labor is supplied
inelastically Lt = 1, and the resource constraint is

Ct + It = Yt, Kt+1 = It + (1− δ)Kt, (A-1)

where It is investment. Importantly, the fact that the consumption good Yt can be converted
into investment one-for-one immediately pins down the unit price of capital (relative to con-
sumption) at one. We discuss this property in more detail momentarily where we also discuss
how to break it.

The Price of Capital in Variants of the Growth Model

To understand why the unit price of capital is pinned down at one in the growth model and
to see how to break this result, it is useful to consider a more general model in which the
result does not necessarily hold: a two-sector growth model with a separate investment goods
production sectors. The model is the same as in Section 1.5 except that the resource constraint
is

Ct + ιt = Yt, It =Gt(ιt), Kt+1 = It + (1− δ)Kt. (A-2)

Here ιt units of the consumption produce It units of investment according to a production
function Gt which is increasing but which may be concave G′′

t ≤ 0 or may vary over time.
Profit maximization of investment goods producer is

max
ιt

ptGt(ιt)− ιt.

As long as the marginal product G′(ιt) is positive, producers choose ιt to satisfy the optimality
condition

ptG
′
t(ιt) = 1. (A-3)

This model has two interesting polar special cases:
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1. Neoclassical growth model: It =G(ιt) = ιt so that G′(ιt) = 1. In this case the resource
constraints (A-2) become Ct+ It = Yt and the optimality condition (A-3) implies pt = 1.

2. Capital in fixed supply (Section 6.1): G(ιt) = 0 for all ιt and δ = 0. In this case It = ιt = 0
so that the resource constraints (A-2) become Ct = Yt. The price of capital pt is pinned
down by market clearing It = 0 rather than the optimality condition (A-3) because there
is no optimization problem for investment goods production.

Growth Model with a Stock Market

This appendix spells out in more detail a decentralization of the growth model in which
households trade shares in the representative firm which are in unit fixed supply. The budget
constraint of the representative household is

pt(St+1 − St) +Ct = Yt +DtSt.

Here, each share St is a claim on the profits of the representative firm. In equilibrium, shares
are in unit fixed supply, so St = 1, and enoting the wage by Wt, the firm’s cash flows are
Dt = Yt −WtLt − It. Using that labor is paid its marginal product Wt = fL(Kt,AtLt)At,
that f(Kt,AtLt) = fK(Kt,AtLt)Kt + fL(Kt,AtLt)AtLt because of constant returns, and
Lt = 1:

Dt = fK(Kt,At)Kt + (1− δ)Kt −Kt+1. (A-4)

The discount rate is still given by equation (12) in the paper and hence Rt+1 = fK(Kt+1,At+1)+
1− δ in equilibrium.

We next show that the share price equals the value of the capital stock pt =Kt+1. First, as
usual, the share price equals the present-discounted value of dividends, i.e. it satisfies equation
(7) in the paper with T =∞.

LEMMA A-1: The share price equals the value of the capital stock: pt =Kt+1.

PROOF: Because the share price satisfies equation (7) in the paper with T =∞ it equiva-
lently satisfies

pt =R−1
t+1(Dt+1 + pt+1).

Using Rt+1 = fK(Kt+1,At+1) + 1− δ and (A-4)

pt(fK(Kt+1,At+1) + 1− δ) = (fK(Kt+1,At+1)Kt+1 + (1− δ)Kt+1 −Kt+2) + pt+1.

The pt sequence satisfying this equation is pt =Kt+1 as claimed. Q.E.D.

Remark on Lemma A-1. Note that it is still true that the price per unit of capital (rather than
the price of the entire capital stock pt =Kt+1) equals one.

Balanced Growth Path (BGP). Assume that productivity At grows at a constant rate

At+1 =GAt, G > 1 ⇒ At =GtA0

and that households have isoelastic preferences

U(C) =
C1−1/σ

1− 1/σ
.
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Then the economy has a BGP on which the capital stock, output, and consumption all grow at
the same rate G. On this BGP, the asset return is constant

Rt+1 = fK(Kt+1,At+1) + 1− δ = fK(K∗
0 ,A0) + 1− δ =R

where we have used that fK(Kt,At) is homogeneous of degree zero in (Kt,At). The initial
location of the BGP K∗

0 is pinned down by the discount rate

R=
1

β
G1/σ.

On the BGP, the asset price grows at a constant rate resulting in capital gains

pt+1

pt
=

Kt+2

Kt+1

=G.

From (A-4), the dividend yield is given by

Dt+1

pt
=

fK(Kt+1,At+1)Kt+1 + (1− δ)Kt+1 −Kt+2

Kt+1

= fK(Kt+1,At+1)+1−δ−G=R−G,

(A-5)
so that

Dt+1

pt
+

pt+1

pt
=R

as expected. Also note that from (A-5) we have

pt =
Dt+1

R−G
.

Therefore, all capital gains are driven entirely by growing cash flows and the price-dividend
ratio is constant as in the Gordon growth model (Gordon and Shapiro, 1956). Also note that
all capital gains are, in fact, unrealized. This is because, in equilibrium, the representative
household does not buy or sell any shares (which are in fixed supply).

1.2. Proof of Lemma 1

Since preferences are assumed to be homothetic, we can write them as U({c(st)}) =
G(H({c(st)})), where H is homogenous of degree ρ and G is a monotonic function. We
assume that G and H are such that G(H(·)) is differentiable, strictly increasing, and strictly
concave. The first-order condition for person θ in history st from problem (13) in the paper is

ω(θ)G′(H)
∂H({c(st, θ)})

∂c(st)
= λ(st),

where λ(st) is the multiplier on the resource constraint in history st. The solution to the first-
order conditions and resource constraints is the unique optimal allocation.

Given the unique optimum, we guess and verify that c(st, θ) = Ω(θ)C(st) satisfies the
first-order conditions and resource constraints for some Ω(θ). Let H̄ ≡ H({C(st)}), which
is pinned down by the aggregate resource conditions in equation (13) in the paper. This implies
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that H({c(st, θ)}) =H({Ω(θ)C(st)}) = Ω(θ)ρH̄ , where the last equality uses the homogene-
ity of H . The first-order condition for θ in state st becomes

λ(st) = ω(θ)G′(H)
∂H({c(st, θ)})

∂c(st)

= ω(θ)G′(Ω(θ)ρH̄)
∂H(Ω(θ){C(st)})

∂c(st)

= ω(θ)G′(Ω(θ)ρH̄)Ω(θ)ρ−1 ∂H({C(st)})
∂c(st)

= ω(θ)G′(Ω(θ)ρH̄)Ω(θ)ρ−1 ∂H̄

∂c(st)
,

where the second equality uses our conjectured consumption rule, the third uses the homogene-
ity of H , and the last uses the definition of H̄ . This condition implies that ω(θ)G′(Ω(θ)ρH̄)Ω(θ)ρ−1

is constant across θ and st. That is, there is an Ω̄ such that

ω(θ)G′(Ω(θ)ρH̄)Ω(θ)ρ−1 = Ω̄ ∀θ.

Since G(H(·)) is strictly concave, the left-hand side is strictly decreasing in Ω(θ) and we can
invert it to solve for Ω(θ) given Ω̄. That is, Ω(θ) = f(ω(θ), Ω̄), where f is strictly increasing
in its first argument. We can solve for Ω̄ as the solution to∫

f(ω(θ), Ω̄)dF (θ) = 1,

which ensures that all resource conditions are satisfied.

B. APPENDIX FOR SECTION 3

B.1. Proof of Proposition 1

We begin with proving the first equation in Proposition 1. From the budget constraint (22) in
the paper we have

T 0(θ) = y0(θ)− c0(θ) + px(θ)

T0(θ) = y0(θ)− c0(θ) + px(θ),

where we denote by ct(θ), t = 0,1, consumption at the old prices and dividends. Subtracting
the former from the latter, we obtain

∆T0(θ) = T0(θ)− T 0(θ) = x(θ)∆p+ p(x(θ)− x(θ))− (c0(θ)− c0(θ)). (A-6)

By the second-period budget constraint (23) in the paper and the normalization that T1(θ) is
held fixed, we have

c1(θ)− c1(θ) = k1(θ)∆D−D(x(θ)− x(θ)) (A-7)

and thus

p(x(θ)− x(θ)) =
p

D

[
k1(θ)∆D− (c1(θ)− c1(θ))

]
.
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Substituting in (A-6), we obtain

∆T0(θ) = x(θ)∆p+
p

D
k1(θ)∆D−

[
(c0(θ)− c0(θ)) +

p

D
(c1(θ)− c1(θ))

]
.

Next, by Lemma 1 we have

∆T0(θ) = x(θ)∆p+
p

D
k1(θ)∆D−Ω(θ)

[
C0 −C0 +

p

D
(C1 −C1)

]
. (A-8)

To rewrite the expression in square brackets, we work with the aggregate resource constraints.
Since

∫
T0(θ)dF (θ) =

∫
T1(θ)dF (θ) = 0 we have C0 = pX+Y0 and C1 =D(K0−X)+Y1.

Therefore

C0 −C0 = pX − pX =X∆p+ p∆X,

C1 −C1 =D(K0 −X)−D(K0 −X) =K0∆D−D∆X −X∆D =K1∆D−D∆X

where ∆X =X −X . Combining yields

C0 −C0 +
p

D
(C1 −C1) =X∆p+

p

D
K1∆D.

Substituting in (A-8) delivers the final result. The proof of the second equation in Proposition
1 follows the same steps, except that we write equation (A-6) equivalently as

∆T0(θ) = x(θ)∆p+ p(x(θ)− x(θ))− (c0(θ)− c0(θ)) (A-9)

and equation (A-7) as

c1(θ)− c1(θ) = k1(θ)∆D−D(x(θ)− x(θ))

and analogously for the aggregate resource constraints.

B.2. Proof of Lemma 2

As in the Lemma, denote the old price by p and the new price by p = p +∆p. Similarly,
denote the old dividend by D and the new dividend by D = D + ∆D. Denote the original
consumption bundle by (c0(θ), c1(θ)). Slutsky compensation is defined as the change in the
investor’s total budget y0(θ) that keeps the original consumption bundle (c0(θ), c1(θ)) afford-
able at the new asset price p and dividend D. In the remainder of the proof, we suppress the
dependence of variables on θ for notational simplicity.

The lifetime budget line at the original price is the set of points (c0, c1) such that

c0 +
p

D
c1 = y0 +

p

D
y1 + pk0 (A-10)

The Slutsky-compensated budget line at the new price is the set of points (c0, c1) such that

c0 +
p

D
c1 = y0 +

p

D
y1 + pk0 +∆y0, (A-11)

where ∆y0 is the Slutsky compensation term. The aim is to solve for ∆y0 such that the two
budget lines intersect at the point (c0, c1) = (c0, c1), i.e. so that the original consumption bundle
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remains affordable at the new prices. To this end, evaluate (A-10) and (A-11) at (c0, c1) and
subtract the old budget constraint (A-10) from the new budget constraint (A-11)(

p

D
− p

D

)
c1 =

(
p

D
− p

D

)
y1 + k0∆p+∆y0

Rearranging, we have

∆y0 =

(
p

D
− p

D

)
(c1 − y1)− k0∆p=

(
p

D
− p

D
+

∆p

D

)
(c1 − y1)− k0∆p

where the second equality used p = p−∆p. Using the second-period budget constraint (15),
which implies c1 − y1 =Dk1, yields

∆y0 =

(
p

D
− p

D

)
Dk1+(k1−k0)∆p= p

(
D

D
− 1

)
k1+(k1−k0)∆p=− p

D
k1∆D−x∆p

where the last equality uses x= k0−k1. Reintroducing the explicit dependence on θ yields the
in the lemma.

B.3. Endogenous payout policy and share repurchases

The capital-structure neutral reformulation of our setup is easiest to explain in the multi-
period model of Section 1. Consider a firm that produces an income stream (i.e. earnings minus
investment) {Πt}Tt=0 from its fundamental (e.g., non-financial) operations. Investors have bud-
get constraint (2) and we assume for simplicity that the only asset at their disposal is firm shares
so that kt(θ) denotes share holdings, pt denotes the share price, and Dt denotes the business
dividends per share. The firm’s cash flows are distributed to shareholders through both divi-
dends and share repurchases:

Πt =KtDt + (Kt −Kt+1)pt (A-12)

where and Kt =
∫
kt(θ)dF (θ) denotes the total amount of outstanding shares. When Kt+1 <

Kt the business is repurchasing its own shares. From this equation it is already apparent
that share repurchases and dividend payments are equivalent means of distributing cash flows
{Πt}Tt=0 to shareholders as a whole. When the business repurchases its shares (i.e., Kt+1 <Kt)
this results in an income stream (kt(θ)− kt+1(θ))pt for those individual selling their shares to
the business.

Denoting by st(θ)≡ kt(θ)/Kt the individual’s ownership share of the business and by Vt ≡
Ktpt the market value of the business, we can combine the individual and business budget
constraints, equation (2) in the paper and (A-12), to obtain:

ct(θ) + Vt(st+1(θ)− st(θ)) = yt(θ) +Πtst(θ) (A-13)

This budget constraint has the same form as equation (2) in the paper, except that (i) the div-
idend per share Dt is replaced by the income stream from operations Πt, (ii) the price per
share pt is replaced by the market value of the firm Vt, and (iii) the number of shares held
by the individuals kt(θ) is replaced by the ownership share in the business st(θ). An alterna-
tive viewpoint on this consolidated budget constraint is to consider the return to investing in
the business. See Fagereng et al. (forthcoming) for more discussion on this capital-structure
neutral reformulation.
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B.4. Alternative implementations: taxes on expenditure or total capital income

This appendix contains the details for Section 3.4.

An expenditure tax

Denote by {ct(θ)}, t = 0,1, the optimal consumption allocation at the old prices and divi-
dends p and D (i.e., the solution to the Pareto problem (21) in the paper), and by {ct(θ)} at
the new prices and dividends p= p+∆p and D =D +∆D. Let {T t(θ)}, t= 0,1, be some
lump-sum taxes that implement the optimum at the old prices and dividends. Finally, let ĉt(θ),
t= 0,1, denote investor θ’s individually optimal consumption allocation under the new prices
and dividends but when taxes are held fixed at the old level. Formally, ĉt(θ) solves

max
c0(θ),c1(θ),x(θ)

U(c0(θ), c1(θ)) s.t. equations (22) and (23) in the paper

when taxes are given by {T t(θ)}. Then we have the following result:

PROPOSITION A-1: Suppose asset prices increase from p to p= p+∆p and dividends from
D to D = D + ∆D. The optimal consumption allocation at the new prices and dividends
{ct(θ)}, t= 0,1, can be implemented with taxes given by

Tt(θ) = T t(θ) +∆ĉt(θ)−Ω(θ)∆Ct, t= 0,1

where ∆ĉt(θ)≡ ĉt(θ)− ct(θ) and ∆Ct =
∫
ct(θ)dF (θ)−

∫
ct(θ)dF (θ).

PROOF: An investor’s present-value budget constraint at the new prices and dividends (p,D)
and new taxes Tt(θ) is

c0(θ) +
p

D
c1(θ) + T0(θ) +

p

D
T1(θ) = y0(θ) +

p

D
y1(θ) + pk0(θ) (A-14)

The present-value budget constraint at the new prices and dividends (p,D) but old taxes T t(θ)
is

ĉ0(θ) +
p

D
ĉ1(θ) + T 0(θ) +

p

D
T 1(θ) = y0(θ) +

p

D
y1(θ) + pk0(θ) (A-15)

Subtracting (A-15) from (A-14) yields

c0(θ)− ĉ0(θ) +
p

D
(c1(θ)− ĉ1(θ)) + T0(θ)− T 0(θ) +

p

D
(T1(θ)− T 1(θ)) = 0

which we can rewrite as

∆T0(θ) +
p

D
∆T1(θ) = ĉ0(θ)− c0(θ) +

p

D
(ĉ1(θ)− c1(θ)) (A-16)

Next, observe that, for t= 0,1,

ĉt(θ)− ct(θ) = ĉt(θ)− ct(θ)− (ct(θ)− ct(θ)) =∆ĉt(θ)−∆ct(θ) =∆ĉt(θ)−Ω(θ)∆Ct,

where the last step uses Lemma 1. Substituting back in equation (A-16) yields

∆T0(θ) +
p

D
∆T1(θ) =∆ĉ0(θ)−Ω(θ)∆C0 +

p

D
(∆ĉ1(θ)−Ω(θ)∆C1).



8

One way of implementing this is to set, in each period t= 0,1,

∆Tt(θ) =∆ĉt(θ)−Ω(θ)∆Ct

as in Proposition A-1. Q.E.D.

Hence, the new optimum can be implemented with a combination of a lump-sum tax equal to
∆ĉt(θ), which is the amount by which individuals would have changed their consumption after
the price and dividend change if taxes had stayed at their old level T t(θ), and a transfer equal
to the difference between the old and new desired consumption ∆ct(θ) = Ω(θ)∆Ct. Notably,
if the parameter changes ∆p and ∆D are “zero-sum,” so that optimal aggregate consumption
Ct does not change, then the tax equals ∆ĉt(θ) meaning that optimal redistributive taxation
simply taxes away any increase in consumption from the asset-price and dividend changes (or
compensates the corresponding reduction in consumption), i.e. this is a “pure” expenditure tax
without an additional transfer. In line with Kaldor’s logic, just like Proposition 1, this works
for any combination of asset price and dividend changes, i.e. regardless of the source of capital
gains. Indeed, we show below that

∆ĉ0(θ) +
p

D
∆ĉ1(θ) = x(θ)∆p+

p

D
k1(θ)∆D, (A-17)

so the present value of the consumption change (holding taxes fixed) is directly linked to the
capital gains and change in dividend income when p and D change. For instance, the investors
who would increase their consumption in response to a pure asset price increase (in the absence
of a further tax change) are precisely those who sell the asset, and vice versa.
Proof of Equation (A-17). Start with the first-period budget constraint (22) holding fixed the
old taxes when prices and dividends change

T 0(θ) = y0(θ)− c0(θ) + px(θ)

T 0(θ) = y0(θ)− ĉ0(θ) + px̂(θ)

where we denote by x̂(θ) the investor’s optimal asset sales at the old taxes but new prices and
dividends. Subtracting the former from the latter, we obtain

0 = x(θ)∆p+ p(x̂(θ)− x(θ))− (ĉ0(θ)− c0(θ)). (A-18)

By the second-period budget constraint (23) and holding the old taxes T 1(θ) fixed, we have

ĉ1(θ)− c1(θ) = k1(θ)∆D−D(x̂(θ)− x(θ))

and thus

p(x̂(θ)− x(θ)) =
p

D

[
k1(θ)∆D− (ĉ1(θ)− c1(θ))

]
.

Substituting in (A-18), we obtain

0 = x(θ)∆p+
p

D
k1(θ)∆D−

[
∆ĉ0(θ) +

p

D
∆ĉ1(θ)

]
.
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A tax on total capital income

In Section 1, we demonstrated that equation (11) is an equivalent way of writing the bud-
get constraint (2) using an investor’s market value of wealth at(θ) ≡ pt−1kt(θ). Thus, as the
following proposition shows, an alternative way of writing the first-best tax response in Propo-
sition 1 is in terms of these wealth holdings and the changes in the total returns R0 and R1.

PROPOSITION A-2: Let the asset price change from p to p= p+∆p and dividends from D
to D =D+∆D resulting in return changes ∆R0 =R0 −R0 and ∆R1 =R1 −R1. Then the
optimal tax T0(θ) (when T1(θ) = 0) is given by

T0(θ) = T 0(θ) + a0(θ)∆R0 +
1

R1

a1(θ)∆R1 −Ω(θ)

[
A0∆R0 +

1

R1

A1∆R1

]
= T 0(θ) + a0(θ)∆R0 +

1

R1

a1(θ)∆R1 −Ω(θ)

[
A0∆R0 +

1

R1

A1∆R1

]
where a1(θ) is investor θ’s period-1 wealth at the new returns, a1(θ) at the baseline returns,
a0(θ) = a0(θ) since p−1 is fixed, and A0, A1,A1 the corresponding aggregate wealth holdings.

PROOF: In a similar manner to Proposition 1, we use the budget constraint in the first period
to get

T 0(θ) = y0(θ)− c0(θ)− a1(θ) +R0a0(θ)

T0(θ) = y0(θ)− c0(θ)− a1(θ) +R0a0(θ).

Subtracting the former from the latter, we obtain

∆T0(θ) = T0(θ)− T 0(θ) = (c0(θ)− c0(θ)) + (a1(θ)− a1(θ)) + a0(θ)∆R0. (A-19)

From the second-period budget constraint we have

c1(θ)− c1(θ) =R1a1(θ)−R1a1(θ). (A-20)

Note that we can write it as

c1(θ)− c1(θ) = a1(θ)(R1 −R1) +R1(a1(θ)− a1(θ)) (A-21)

Thus we have

a1(θ)− a1(θ) =
1

R1

(c1(θ)− c1(θ)) +
1

R1

a1(θ)∆R1

Replacing in (A-19) we get

∆T0(θ) = a0(θ)∆R0 +
1

R1

a1(θ)∆R1 −
[
(c0(θ)− c0(θ)) +

1

R1

(c1(θ)− c1(θ))

]
.

Again, by Lemma 1, we know ct(θ) = Ω(θ)Ct. So we have

∆T0(θ) = a0(θ)∆R0 +
1

R1

a1(θ)∆R1 −Ω(θ)

[
C0 −C0 +

1

R1

(C1 −C1)

]
. (A-22)
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Similar to Proposition 1, working with the aggregate resource constraints we have

C0 +A1 = Y0 +R0A0,

C1 = Y1 +R1A1.

Therefore

C0 −C0 =−∆A1 +A0∆R0,

C1 −C1 =R1A1 −R1A1 =R1∆A1 +A1∆R1.

Replacing in equation (A-22) we get the final result

T0(θ) = T 0(θ) + a0(θ)∆R0 +
1

R1

a1(θ)∆R1 −Ω(θ)

[
A0∆R0 +

1

R1

A1∆R1

]
. (A-23)

The proof of the second equation in Proposition A-2 follows the same steps. Q.E.D.

At first glance, the tax change in Proposition A-2 appears related to a Haig-Simons notion
of income: in each period, the additional total capital income at(θ)∆Rt, including unrealized
gains, is taxed. However, there is an important difference. This is easiest to see by considering
an increase in the asset price p holding dividends fixed (Special Case 1). In this case, we have

∆R0 =
∆p

p−1

> 0 and ∆R1 =
D

p
− D

p
< 0

since p= p+∆p > p. Hence, the investor faces a tax in period 0 (due to the higher return from
the increased asset price) but a subsidy in period 1. The reason for the latter is that, whereas the
asset price has increased, dividends have not, so the dividend-price ratio and thus the return in
period 1 has been reduced, which needs to be compensated.

While the former tax increase (due to the unrealized capital gains in the initial period) indeed
corresponds to a Haig-Simons income tax, the latter subsidy (due to the lower dividend-price
ratio subsequently) does not. But Proposition A-2 shows that they belong together. Therefore,
due to these opposing effects, the total change in taxes is generally ambiguous. In fact, we
know from Proposition 1 that it depends solely on whether the investor is a buyer or seller. For
instance, when x(θ) = 0 so the individual is not trading, the additional tax in period 0 and the
subsidy in period 1 precisely cancel out.

Proposition A-2 naturally extends to the multi-period case, as we show next:

PROPOSITION A-3: Suppose asset prices change by {∆pt}Tt=0 and dividends by {∆Dt}Tt=0

resulting in return changes {∆Rt}Tt=0 . Then optimal taxes {Tt(θ)}Tt=0 are such that

T∑
t=0

R
−1

0→tTt(θ) =
T∑

t=0

R
−1

0→t[T t(θ) + at(θ)∆Rt −Ω(θ)At∆Rt]

PROOF: The proof follows exactly analogous steps to the proof of Proposition 5. Q.E.D.

Thus, in the multi-period model, a one-off, permanent increase in the asset price would trig-
ger a one-off tax followed by a subsidy forever, in a way that their present value sum is zero
for an investor who is not trading. The alternative implementation in Propositions A-2 and A-3
can therefore lead to very volatile taxes over time compared to Proposition 1.
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C. APPENDIX FOR SECTION 4

C.1. Second-best problem for alternative tax instruments

A tax on c0. Consider first a tax on period-0 consumption. This means that pre-tax consump-
tion in period 0, given by z0(θ) ≡ px(θ) + y0(θ), is observable, so after-tax consumption is
c0(θ) = z0(θ)− T0(z0(θ)), where T0(z0) is the nonlinear consumption tax in t= 0. Hence,

x(θ) =
z0(θ)− y0(θ)

p

and we can write the global incentive constraints as

U(θ)≡ U

(
c0(θ),D

(
k0(θ)−

z0(θ)− y0(θ)

p

)
+ y1(θ)

)

≥ U

(
c0(θ̂),D

(
k0(θ)−

z0(θ̂)− y0(θ)

p

)
+ y1(θ)

)
∀θ, θ̂.

The local incentive constraints are therefore given by equation (26) in the paper with A(θ) = 0
and

B(θ) =Dk′
0(θ) +

D

p
y′
0(θ) + y′

1(θ).

A tax on c1. Consider next a tax on period-1 consumption. Pre-tax consumption in period 1
is z1(θ)≡D(k0(θ)− x(θ)) + y1(θ) and after-tax consumption is c1(θ) = z1(θ)− T1(z1(θ)),
where T1(z1) is the nonlinear consumption tax in t= 1. Hence,

x(θ) =
y1(θ)− z1(θ)

D
+ k0(θ)

and we can write the global incentive constraints as

U(θ)≡ U
( p

D
(y1(θ)− z1(θ)) + pk0(θ) + y0(θ), c1(θ)

)
≥ U

( p

D
(y1(θ)− z1(θ̂)) + pk0(θ) + y0(θ), c1(θ̂)

)
∀θ, θ̂.

The local incentive constraints are therefore again given by equation (26) in the paper but with

A(θ) = pk′
0(θ) + y′

0(θ) +
p

D
y′
1(θ)

and B(θ) = 0.
Further tax instruments. More generally, for any tax instrument conditioning on some ob-

servable choices, we can decompose consumption in each period t = 0,1 into its observable
and its unobservable components: ct(θ) = cot (θ)+ cut (θ). For instance, with an assets sales tax,
the observable components are co0(θ) = zx(θ) in period 0 and co1(θ) = −Dx(θ) in period 1,
whereas the unobservable components are cu0 (θ) = y0(θ) and cu1 (θ) =Dk0(θ) + y1(θ). Hence,
the general incentive constraint can be written as

U(θ)≡ U (co0(θ) + cu0 (θ), c
o
1(θ) + cu1 (θ))

≥ U
(
co0(θ̂) + cu0 (θ), c

o
1(θ̂) + cu1 (θ)

)
∀θ, θ̂.
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The local incentive constraints are therefore always given by equation (26) in the paper with
A(θ) = cu0

′(θ) and B(θ) = cu1
′(θ). Note that this general approach also allows for combinations

of the tax instruments considered so far. For example, suppose there is both an asset sales tax in
period 0 and a wealth tax in period 1. Then co0(θ) = zx(θ) and co1(θ) =D(k0(θ)− x(θ)) while
cu0 (θ) = y0(θ) and cu1 (θ) = y1(θ), so we obtain A(θ) = y′

0(θ) and B(θ) = y′
1(θ).

1

C.2. Solving the general second-best problem

For any preferences U(c0, c1) =G(C(c0, c1)) and any of the tax instruments considered, we
can write the second-best Pareto problem as

max
{c0(θ),c1(θ),V (θ)}

∫
ω(θ)G(V (θ))dF (θ)

subject to the incentive constraints

V ′(θ) = Cc0(c0(θ), c1(θ))A(θ) + Cc1(c0(θ), c1(θ))B(θ) ∀θ (A-24)

where Cct ≡ ∂C/∂ct, the resource constraint

Y ≥
∫ (

c0(θ) +
p

D
c1(θ)

)
dF (θ) (A-25)

with

Y ≡ pK0 + Y0 +
p

D
Y1,

and

V (θ) = C(c0(θ), c1(θ)) ∀θ.

It is useful to substitute out c0(θ) = Φ(V (θ), c1(θ)) where Φ(., c1) is the inverse function of
C(., c1) with respect to its first argument. This allows us to write the maximization problem in
terms of V (θ) and c1(θ) only. Attaching multipliers µ(θ) to the incentive constraint for type θ
and η to the resource constraint, the corresponding Lagrangian becomes, after integrating by
parts,

L=

∫
ω(θ)G(V (θ))dF (θ)−

∫
µ′(θ)V (θ)dθ

−
∫

µ(θ) [C0(Φ(V (θ), c1(θ)), c1(θ))A(θ) + C1(Φ(V (θ), c1(θ)), c1(θ))B(θ)]dθ

−η

∫ [
Φ(V (θ), c1(θ)) +

p

D
c1(θ)

]
dF (θ).

Using the fact that

∂Φ

∂V
=

1

C0

and
∂Φ

∂c1
=−C1

C0

1In this case, the asset sales tax and the wealth tax are not separately determined, but the optimal consumption
allocation is.
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and dropping arguments to simplify notation, the first-order condition for c1(θ) is

µ

[(
Cc0c0Cc1

Cc0

−Cc0c1

)
A+

(
Cc0c1Cc1

Cc0

−Cc1c1

)
B

]
= ηf

[
p

D
− Cc1

Cc0

]
(A-26)

and for V (θ)

ωfG′(V ) = µ′ + µ

[
Cc0c0

Cc0

A+
Cc0c1

Cc0

B

]
+

ηf

Cc0

(A-27)

where Ccsct denotes the second derivates ∂2C/(∂cs∂ct). Together with the incentive constraints
(A-24), the resource constraint (A-25) and the boundary conditions µ(θ) = µ(θ) = 0, equations
(A-26) and (A-27) determine the optimal solution {V (θ), c1(θ), µ(θ), η}.

C.3. CES utility and numerical algorithm

Under the CES preferences given in equation (27) in the paper, it turns out to be convenient
to work with

ξ(θ)≡ c0(θ)

c1(θ)
.

Then the first-order conditions (A-26) and (A-27) can be written as

µ(θ)

σc1(θ)

(
ξ(θ)

σ−1
σ + β

) 1
σ−1

(B(θ)−A(θ)/ξ(θ)) = ηf(θ)

(
p

βD
− ξ(θ)

1
σ

)
(A-28)

ω(θ)f(θ)G′(V (θ)) = µ′(θ) +
βµ(θ)

σc1(θ)

B(θ)−A(θ)/ξ(θ)

ξ(θ)
σ−1
σ + β

+ ηf(θ)
(
1 + βξ(θ)

1−σ
σ

) 1
1−σ

.

(A-29)
Moreover, the incentive constraints (A-24) become

V ′(θ) =
(
ξ(θ)

σ−1
σ + β

) 1
σ−1

(
ξ(θ)−

1
σA(θ) + βB(θ)

)
(A-30)

and, by definition of CES utility,

V (θ) = c1(θ)
(
ξ(θ)

σ−1
σ + β

) σ
σ−1

. (A-31)

We first use (A-28) together with (A-31) to numerically solve for ξ(θ) as a function of µ(θ),
V (θ) and η. Substituting this in (A-29) and (A-30) delivers a system of two ordinary differential
equations in µ(θ) and V (θ) that we can solve, given any η, using the boundary conditions
µ(θ) = µ(θ) = 0. Finally, we find η such that the resource constraint (A-25) is satisfied, noting
that c0(θ) = ξ(θ)c1(θ).

C.4. Proof of Proposition 2

We establish the result in a series of steps. We first characterize the first-best allocation Γ∗(σ)
under preferences (27) in the paper.
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LEMMA A-2: With preferences (27), we have

Ω(θ) =
ω(θ)

1
γ∫

ω(θ′)
1
γ dF (θ′)

.

PROOF: This is a special case of Lemma 1 with G′(x) = x−γ and ρ= 1. We then have

ω(θ)Ω(θ)−γH̄−γ = Ω̄.

Solving this for Ω(θ) yields

Ω(θ) = f(ω(θ), Ω̄) =

(
ω(θ)

Ω̄

) 1
γ

H̄−1.

Integrating, we have

Ω̄ =

(∫
ω(θ′)

1
γ dF (θ′)

)γ

H̄−γ ,

which delivers the desired expression. Q.E.D.

The next lemma characterizes the first-best allocation for any σ ≥ 0:

LEMMA A-3: The first-best allocation Γ∗(σ) for σ ≥ 0 is

c∗0(θ,σ) = Ω(θ)
(
1 +R−1(βR)σ

)−1 (
Y0 +R−1Y1 + pK0

)
c∗1(θ,σ) = (βR)σc∗0(θ,σ),

where R≡D/p is the interest rate.

PROOF: For σ > 0, the first-order conditions for the first-best allocation are (dropping σ for
notational simplicity):

ω(θ)Uc0(θ) = ω(θ)V (θ)−γ

(
c0(θ)

V (θ)

)− 1
σ

= η

ω(θ)Uc1(θ) = ω(θ)βV (θ)−γ

(
c1(θ)

V (θ)

)− 1
σ

=R−1η,

where η > 0 is the multiplier on the resource constraint and V (θ) = C(c0(θ), c1(θ)). Taking the
ratio and rearranging, we have:

c1(θ) = (βR)σ c0(θ).

Substituting into C, we obtain:

V (θ) =
(
c0(θ)

σ−1
σ + β [(βR)σ c0(θ)]

σ−1
σ

) σ
σ−1

=
(
1 + β (βR)σ−1

) σ
σ−1 c0(θ).
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The first-order condition for c0 then becomes (after rearranging):

c0(θ) = η− 1
γ ω(θ)

1
γ
(
1 + β (βR)σ−1

) 1/γ−σ
σ−1 .

We can eliminate η− 1
γ using the resource condition (19), Lemma 1 and Lemma A-2 to obtain:

c0(θ) = Ω(θ)
(
1 +R−1(βR)σ

)−1 (
Y0 +R−1Y1 + pK0

)
.

For σ = 0, we have C(c0, c1) = min{c0, c1}. The first-best will set c0 = c1, and hence solves
the problem

max
c(θ)

∫
ω(θ)

c(θ)1−γ

1− γ
dF (θ),

subject to ∫
c(θ)dF (θ) = (1 +R−1)−1

(
Y0 +R−1Y1 + pK0

)
.

The first-order condition is ω(θ)c(θ)−γ = η, which, after substituting in the resource constraint,
yields the proposed outcome with σ set to zero. Q.E.D.

Lemma A-3 implies that the first-best allocation Γ∗(σ) is continuous in σ. Hence, in the
neighborhood of σ = 0, the associated first-best allocations Γ∗(σ) are also in the neighborhood
of the σ = 0 first-best allocation Γ∗(0). If our second-best allocation ΓM(σ) converges to Γ∗(0)
as σ→ 0, this means that it also converges to Γ∗(σ).

The second-best allocation ΓM(σ) also needs to satisfy the incentive constraints (26) (in ad-
dition to the resource constraint (19)). With preferences (27), the incentive constraints simplify
to (A-30). The next lemma shows that Assumption 1 (i) is needed for the first-best allocation
Γ∗(0) to be incentive compatible.

LEMMA A-4: If Γ∗(0) is incentive compatible for σ = 0, it satisfies Assumption 1 (i).

PROOF: As σ→ 0, (A-30) can be written as

V ′(θ) =
ξ(θ)−

1
σA(θ) + βB(θ)

ξ(θ)−
1
σ + β

.

Hence, V ′(θ) must be a convex combination of A(θ) and B(θ). Moreover, when σ = 0, V (θ) =
c0(θ) = c1(θ)≡ c(θ). Q.E.D.

For general σ ≥ 0, consider allocations that take the following form:

c0(θ,σ) = eσg(θ)c(θ,σ) (A-32)

c1(θ,σ) = c(θ,σ),

where c(θ,σ) is the solution to the following linear ODE:

c′(θ,σ) = q(θ,σ)− σp(θ,σ)c(θ,σ), (A-33)
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where

q(θ,σ)≡ A(θ) + βeg(θ)B(θ)

eσg(θ) + βeg(θ)

p(θ,σ)≡ g′(θ)eσg(θ)

eσg(θ) + βeg(θ)
.

Note that Assumption 1 (ii) ensures p exists and is bounded. Also note that

q(θ,σ) =

(
1 + βeg(θ)

eσg(θ) + βeg(θ)

)
c∗′(θ). (A-34)

We next establish that the proposed allocation is incentive compatible:

LEMMA A-5: The proposed allocation (A-32) where c(θ,σ) solves (A-33) satisfies (A-30).

PROOF: An allocation {c0(θ), c1(θ)} satisfies (A-30) iff

c′0(θ)−A(θ) + β

(
c0(θ)

c1(θ)

) 1
σ

(c′1(θ)−B(θ)) = 0. (A-35)

To see that the proposed allocation satisfies (A-35), note that

c′0(θ,σ) = eσg(θ) [σg′(θ)c(θ,σ) + c′(θ,σ)]

c′1(θ,σ) = c′(θ,σ).

Substituting into (A-35), we have

eσg(θ) [σg′(θ)c(θ,σ) + c′(θ,σ)]−A(θ) + βeg(θ) (c′(θ,σ)−B(θ))

= (eσg(θ) + βeg(θ))c′(θ,σ)−A(θ)− βeg(θ)B(θ) + σg′(θ)eσg(θ)c(θ,σ)

= (eσg(θ) + βeg(θ)) [c′(θ,σ)− q(θ,σ) + σp(θ,σ)c(θ,σ)] .

Setting this equal to zero yields (A-33). Q.E.D.

The proposed allocation satisfies the resource constraint if∫ θ

θ

(
eσg(θ) +R−1

)
c(θ,σ)dF (θ) = Y0 +R−1Y1 + pK0. (A-36)

Note that (A-33) is a linear first-order ODE. Hence, it can be solved in closed form up to a
boundary condition c(θ,σ). In particular, let P (θ;σ)≡

∫ θ

θ
p(θ̂, σ)dθ̂. From Assumption 1 (ii),

P is bounded. Then,

c(θ,σ) = e−σP (θ,σ)

(∫ θ

θ

eσP (θ̂,σ)q(θ̂, σ)dθ̂+ c(θ,σ)

)
. (A-37)

Substituing (A-37) into the above, the resource condition uniquely pins down c(θ,σ).
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The final restriction on the proposed allocation is that it is weakly positive. We will verify
this in the neighbourhood of σ = 0 below.

Thus a weakly positive solution to (A-33) that satisfies (A-36) is feasible and incentive com-
patible. We show that such a sequence of solutions converges uniformly to the first-best.

We start with:

LEMMA A-6: Let c solve (A-33). Then c′(θ,σ) converges uniformly to c∗′(θ) as σ→ 0.

PROOF: From (A-34), we have

c′(θ,σ)− c∗′(θ) =

[(
1 + βeg(θ)

eσg(θ) + βeg(θ)

)
− 1

]
c∗′(θ).

Letting ∥∥ denote the sup norm over θ, this implies

∥c′(θ,σ)− c∗′(θ)∥=
∥∥∥∥ 1− eσg(θ)

eσg(θ) + βeg(θ)
c∗′(θ)

∥∥∥∥≤ ∥∥1− eσg(θ)
∥∥× ∥∥∥∥ c∗′(θ)

eσg(θ) + βeg(θ)

∥∥∥∥ .
As the final term on the far right is bounded, we need to show the first term in the far right
expression converges to zero. To see this, note that∥∥1− eσg(θ)

∥∥≤ eσ∥g(θ)∥ (1− e−σ∥g(θ)∥)→ 0.

Q.E.D.

A corollary of this lemma is that

∥c(θ,σ)− c∗(θ)∥=
∥∥∥∥∫ θ

θ

(c′(θ̂, σ)− c∗′(θ̂))dθ̂+ c(θ,σ)− c∗(θ)

∥∥∥∥
≤
∥∥∥∥∫ θ

θ

(c′(θ̂, σ)− c∗′(θ̂))dθ̂

∥∥∥∥+ |c(θ,σ)− c∗(θ)|

≤ ∥c′(θ,σ)− c∗′(θ,σ)∥(θ− θ) + |c(c,σ)− c∗(θ)| → |c(θ,σ)− c∗(θ)|.

Hence to show uniform convergence of c(θ,σ) to c∗(θ) we need to show that c(θ,σ)→ c∗(θ).
This follows from the fact that the resource condition requires that∫ θ

θ

c(θ,σ)dF =

∫ θ

θ

c∗(θ)dF.

This is true for all σ. Using the Fundamental Theorem of Calculus, we can write c(θ,σ) =

c(θ,σ)+
∫ θ

θ
c′(θ′, σ)dθ′ and similarly for c∗(θ). Thus, the resource constraint can be written as

c(θ,σ) = c∗(θ) +

∫ θ

θ

∫ θ

θ

(c∗′(θ′)− c(θ′, σ))dθ′dF.

We showed above that the last term on the right converges to zero as σ→ 0. Hence, c(θ,σ)→
c∗(θ). As c(θ,σ)→ c∗(θ) uniformly, and c∗(θ)> 0 for all θ, this also establishes that c(θ,σ)≥
0 in a neighborhood of σ = 0.
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In sum, we have shown that there exists a sequence of feasible, incentive compatible alloca-
tions that converge uniformly to Γ∗(0) as σ → 0. Continuity of Γ∗(σ) shown in Lemma A-3
implies that this sequence of allocations also converges uniformly to Γ∗(σ) as σ → 0. Finally,
the second-best optimum ΓM(σ) must also be feasible and incentive compatible but achieve at
least weakly higher welfare than the proposed allocation. Since Γ∗(σ) uniquely achieves the
highest welfare among all feasible allocations, we must also have ΓM(σ)→ Γ∗(σ) as σ → 0,
which is the result in Proposition 2.

C.5. Proof of Proposition 3

We first characterize the efficient portfolio choice. Without taxes, the investor solves

max
x,b

U(px− qb− χ(x) + y0, b+D(k0 − x) + y1)

with FOCs

U0(p− χ′) = U1D

U0q = U1.

Dividing yields

p− χ′(x) = qD. (A-38)

It is straightforward to see that the same efficiency condition would apply in the case of lump-
sum taxes, a tax on net trades z = px− qb−χ(x) in period 0, or on net trades b−Dx in period
1.

Turning to the Mirrlees problem with two assets, suppose both x and b are observable, so
a tax T (x, b) is feasible. This means that px(θ)− qb(θ)− χ(x(θ)) is observable. Like in Ap-
pendix C.1, we can write the allocation in terms of the observable and unobservable compo-
nents of consumption, with

co0(θ) = px(θ)− qb(θ)− χ(x(θ))− T (x(θ), b(θ))

co1(θ) = b(θ)−Dx(θ)

and cu0 (θ) = y0(θ), cu1 (θ) =Dk0(θ) + y1(θ). Thus, the incentive constraint is

V (θ)≡ U(co0(θ) + cu0 (θ), c
o
1(θ) + cu1 (θ))≥ U(co0(θ

′) + cu0 (θ), c
o
1(θ

′) + cu1 (θ)) ∀θ, θ′

with the usual envelope condition

V ′(θ) = U0(c0(θ), c1(θ))c
u
0
′(θ) +U1(c0(θ), c1(θ))c

u
1
′(θ). (A-39)

We can thus write the planning problem as

max
{c0(θ),c1(θ),V (θ)}

∫
ω(θ)V (θ)dF (θ)

subject to

V (θ) = U(c0(θ), c1(θ)),
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the local incentive constraint (A-39), and the resource constraint∫
c0(θ)dF (θ) + q

∫
c1(θ)dF (θ) = Y

with

Y ≡
∫

y0(θ)dF (θ)+q

∫
[Dk0(θ)+y1(θ)]dF (θ)+ max

{x(θ)}

∫
[px(θ)−χ(x(θ))−qDx(θ)]dF (θ)

It is clear from this formulation that any second-best optimum also prescribes the efficient
portfolio choice given by (A-38) for each investor.

Now suppose that what we can observe is only the net trade z ≡ px− qb−χ(x) in period 0,
and thus we impose a tax T (z) (a tax on the “net trade” in period 1, b−Dx, is equivalent). We
know from above that this implements the efficient portfolio choice, which pins down x(θ).
Since we know x(θ) and z(θ), we then also know b(θ). Thus, a tax T (z) is equivalent to a tax
T (x, b).

D. APPENDIX FOR SECTION 5

D.1. Two-period model with risk and borrowing

To obtain additional intuition for some of the results in Section 5.1, this appendix repeats
the derivations there but for the special case with two periods, T = 1. Denote by m(s1) the
stochastic discount factor of the representative counterparty in global financial markets where
s1 = (s0, s1). In particular, the period-0 Arrow-Debreu price of a unit of consumption delivered
in state s1 is π(s1)m(s1). No arbitrage implies:

p(s0) =
∑
s1

π(s1)m(s1)D(s1), q(s0) =
∑
s1

π(s1)m(s1). (A-40)

The investors’ flow budget constraints (2) specialize to

c0(θ, s0) = p(s0)(k0(θ, s−1)− k1(θ, s0))− q(s0)b(θ, s0) + y0(θ)− T0(θ, s0) ∀s0
c1(θ, s

1) =D(s1)k1(θ, s0) + b(θ, s0) + y1(θ)− T1(θ, s
1) ∀s1

where, just like in the deterministic model, we assume D0 = b0 = p1 = 0. p(s0) denotes the
period-0 price of risky capital, q(s0) the price of the bond, b(θ, s0) the amount of the bond
purchased in period 0 and D(s1) the dividends paid to capital in period 1.

We allow taxes and transfers in both periods t= 0,1 to be indexed by st. In order to ensure
that risk is relevant, we assume

∫
T0(θ, s0)dF (θ) = 0 for all s0 and

∫
T1(θ, s

1)dF (θ) = 0 for
all s1, so the economy cannot insure itself other than through trading capital and the bond with
the rest of the world.

First Best. The first-best allocation is the solution to

max
{c0(θ,s0),{c1(θ,s1)},X(s0)}

E
∫

ω(θ)U({c0(θ, s0), c1(θ, s1)})dF (θ) s.t.

∫
c0(θ, s0)dF (θ) + q(s0)

∫
c1(θ, s

1)dF (θ)

= Y0 + q(s0)Y1 + p(s0)X(s0) + q(s0)D(s1)(K0 −X(s0))



20

for all s0, s1 and where X(s0)≡
∫
(k0(θ)− k1(θ, s0))dF (θ).

As in the benchmark environment, the fact that individuals can trade assets generates an
indeterminacy in the tax system that decentralizes the first-best allocation. With two assets,
there are two dimensions of indeterminacy, spanned by the payoffs to the risk-free bond and
risky capital. Specifically:

LEMMA A-7: There exists a first-period tax schedule T0(θ, s0) that implements the first-best
allocation when combined with any second-period tax schedule of the form

T1(θ, s
1) = α(θ, s0) + γ(θ, s0)D(s1) ∀θ, s1,

where, for any given s0, α(θ, s0) and γ(θ, s0) are arbitrary functions of θ that satisfy∫
α(θ, s0))dF (θ) =

∫
γ(θ, s0))dF (θ) = 0.

That is, the second-period tax schedule can be an arbitrary linear function of the payoffs to
risky capital. This follows from the fact that individuals can always adjust their private holding
of the two assets to account for differences in the tax system that are spanned by the payoffs to
the bond and capital.

Shocks to asset prices and dividends. We now revisit how shocks to asset prices and cash
flows induce changes in the optimal tax burden. In period 0, consider a baseline state s0 (with
corresponding pricing kernel m(s0, s1) and dividends D(s0, s1)) and compare it to another,
new shock s0 with stochastic discount factor m(s0, s1) and dividends D(s0, s1). For example,
suppose attitudes toward risk change, or the time discounting inherent in m changes. By ex-
pression (A-40), this induces changes in the price of capital p(s0) and risk-free bonds q(s0).
The next result is the special case of Proposition 4 with two time periods.

PROPOSITION A-4: Suppose shock s0 is realized so that the pricing kernel changes by
∆m(s1) =m(s0, s1)−m(s0, s1) and dividends change by ∆D(s1) =D(s0, s1)−D(s0, s1).
Let

∆p=
∑
s1

π(s1) [m(s0, s1)D(s0, s1)−m(s0, s1)D(s0, s1)] and ∆q =
∑
s1

π(s1)∆m(s1).

Then the following tax change ∆T0(θ, s0) = T0(θ, s0)−T0(θ, s0) and ∆T1(θ, s
1) = T1(θ, s0, s1)−

T1(θ, s0, s1) ∀s1 is an optimal response:

∆T0(θ, s0) = x(θ, s0)∆p− b(θ, s0)∆q−Ω(θ) [X(s0)∆p−B(s0)∆q]

∆T1(θ, s
1) = k1(θ, s0)∆D(s1)−Ω(θ)K1(s0)∆D(s1).

Role of the government. We now use the two-period model to expand on the discussion of
the role of the government in Section 5.1, specifically what time-zero taxation can induce in-
vestors to buy shares of the market portfolio. Lemma A-7 speaks to the fact that there are many
tax schemes that implement the same optimal allocation. In fact, setting α(θ, s0) = γ(θ, s0) = 0
for all θ implies that all taxation can take place in period 0. This reflects that the tax schemes
are spanned by available assets. In particular, in the initial period, the government can set

T0(θ, s0) = p(s0) (k0(θ)−Ω(θ)K0) + y0(θ) + q(s0)y1(θ)− Y0 − q(s0)Y1.

An investor of type θ then buys k1(θ, s0) = Ω(θ)K1 units of the risky asset and Ω(θ)(Y1 +
B(s0))− y1(θ) of the risk-free bond, meaning that everyone holds shares of the market portfo-
lio. As a result, all investors are equally affected by future shocks to prices and dividends and
there is no scope for redistributive taxation going forward.
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Proof of Lemma A-7. In the decentralized equilibrium, the individual’s problem is

maxU({c0(θ, s0), c1(θ, s1)}) s.t.

c0(θ, s0) = y0(θ) + p(s0)x(θ, s0)− q(s0)b(θ, s0)− T0(θ, s0) ∀s0
c1(θ, s

1) = b(s0) +D(s1)(k0(θ)− x(θ, s0))− T1(θ, s
1) ∀s1.

Eliminating b, we can write the budget set as present-value constraints (suppressing θ):

c0(s0) + q(s0)c1(s
1)

=y0 + q(s0)y1 + p(s0)x(s0) + q(s0)D(s1)(k0 − x(s0))− T0(s0)− q(s0)T1(s
1) ∀s1.

The first-order conditions for this problem take the same form as the planning problem, so the
first-best allocation satisfies the individual’s problem as long as it satisfies the budget set. For
this, we need to find a tax scheme {T0(θ, s0), T1(θ, s

1)} and asset positions {b(s0), x(s0)} such
that for all θ and s1:

Ω(θ)C∗
0 (s0) = y0(θ) + p(s0)x(θ, s0)− q(s0)b(θ, s0)− T0(θ, s0)

Ω(θ)C∗
1 (s

1) = y1(θ) +D(s1)(k0(θ)− x(θ, s0)) + b(θ, s0)− T1(θ, s
1)

where we used Lemma 1. Using T1(θ, s
1) = α(θ, s0) + γ(θ, s0)D(s1) and the aggregate re-

source constraint in history s1, we have:

Ω(θ)
(
D(s1)K∗

1 (s0) + Y1 +B∗(s0)
)

=y1(θ) +D(s1)(k0(θ)− x(θ, s0)) + b(θ, s0)− α(θ, s0)− γ(θ, s0)D(s1).

Set

x(θ, s0) =−γ(θ, s0)−Ω(θ)K∗
1 (s0) + k0(θ)

b(θ, s0) = Ω(θ)(Y1 +B∗(s0))− y1(θ) + α(θ, s0),

and the second-period budget constraint is satisfied for all s1. Setting

T0(θ, s0) =−Ω(θ)C∗
0 (s0) + y0(θ) + p(s0)x(θ, s0)− q(s0)b(θ, s0),

the first-period budget constraint is satisfied, as well. Moreover, we have
∫
T0(θ, s0)dF (θ) = 0

for all s0. Hence, the tax system along with the proposed policies {b, x} ensures that the house-
hold’s necessary and sufficient conditions are satisfied evaluated at the first-best allocation.

D.2. Proof of Proposition 5

In the decentralized equilibrium, the individual’s problem is maxU({ct(θ, st)}) s.t.

ct(θ, s
t) + pt(s

t)(kt+1(θ, s
t)− kt(θ, s

t−1)) + qt(s
t)bt+1(θ, s

t)

= yt(θ) +Dt(s
t)kt(θ, s

t−1) + bt(θ, s
t−1)− Tt(θ, s

t) ∀t, st.

The first-order conditions for this problem take the same form as those for the planning prob-
lem, so the first-best allocation solves the individual’s problem as long as it satisfies the budget
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constraints. To simplify notation, we write the prices and dividends associated with the refer-
ence state st as pt, qt and Dt and analogously for the respective allocations. Similary, let pt,
qt and Dt denote the prices and dividends under the new shock, suppressing st, and again we
use the same convention for the allocations. From the aggregate resource condition (3) in the
paper:

∆Ct =Xt∆pt + pt∆Xt +∆Bt −Bt+1∆qt − qt∆Bt+1 +Kt∆Dt +Dt∆Kt. (A-41)

By Lemma 1, the change in the first-best allocation is ∆ct(θ) = Ω(θ)∆Ct. We now show that
the first-best allocation is affordable for each θ under the taxes given by Proposition 4. Let
individual θ set asset positions such that

∆kt(θ) = Ω(θ)∆Kt and ∆bt(θ) = Ω(θ)∆Bt,

which implies ∆xt(θ) = Ω(θ)∆Xt. If the first-best allocation is attainable with these portfolio
choices and the proposed lump-sum taxes, they are consistent with individual optimization.

We have

∆ct(θ) =xt(θ)∆pt + pt∆xt(θ) +∆bt(θ)− bt+1(θ)∆qt − qt∆bt+1(θ)

+ kt(θ)∆Dt +Dt∆kt(θ)−∆Tt(θ)

=pt∆xt(θ) +∆bt(θ)− qt∆bt+1(θ) +Dt∆kt(θ) +Ω(θ) [Xt∆pt +Kt∆Dt −Bt+1∆qt]

=Ω(θ)
[
∆Ct =Xt∆pt + pt∆Xt +∆Bt −Bt+1∆qt − qt∆Bt+1 +Kt∆Dt +Dt∆Kt

]
=Ω(θ)∆Ct,

where the second equation used the proposed tax policy from Proposition 5, the third the pro-
posed individual asset positions, and the last equation (A-41). Hence, the proposed taxes allow
each θ to afford the change in the first-best allocation. Moreover, by construction we have∫
Tt(θ, s

t)dF (θ) = 0 for all st. Hence, the tax system along with the proposed portfolios en-
sures that the household’s necessary and sufficient conditions are satisfied evaluated at the
first-best allocation.

D.3. Proof of Proposition 6

An investor’s sequential budget constraint under history st is

Tt(θ, s
t) =yt(θ) + (Dt(s

t) + pt(s
t))kt(θ, s

t−1)− pt(s
t)kt+1(θ, s

t)

+ bt(θ, s
t−1)− qt(s

t)bt+1(θ, s
t)− ct(θ, s

t)

and under any other history s̃t

Tt(θ, s̃
t) =yt(θ) + (Dt(s̃

t) + pt(s̃
t))kt(θ, s̃

t−1)− pt(s̃
t)kt+1(θ, s̃

t)

+ bt(θ, s̃
t−1)− qt(s̃

t)bt+1(θ, s̃
t)− ct(θ, s̃

t).

Subtracting one from the other yields:

∆Tt(θ, s
t, s̃t) = kt(θ, s

t−1)∆Dt(s
t, s̃t) + xt(θ, s

t)∆pt(s
t, s̃t)− bt+1(θ, s

t)∆qt(s
t, s̃t)

+(Dt(s̃
t) + pt(s̃

t))∆kt(θ, s
t−1, s̃t−1) +∆bt(θ, s

t−1, s̃t−1) (A-42)

−pt(s̃
t)∆kt+1(θ, s

t, s̃t)− qt(s̃
t)∆bt+1(θ, s

t, s̃t)−∆ct(θ, s
t, s̃t)−∆ct(θ, s

t, s̃t).
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Multiplying the second line by π(s̃t)m0→t(s̃
t) and summing over t and s̃t yields

T∑
t=0

∑
s̃t

π(s̃t)m0→t(s̃
t)
[(
Dt(s̃

t) + pt(s̃
t)
)
∆kt(θ, s

t−1, s̃t−1) +∆bt(θ, s
t−1, s̃t−1)

]
=

T∑
t=1

∑
s̃t

π(s̃t)m0→t(s̃
t)
[(
Dt(s̃

t) + pt(s̃
t)
)
∆kt(θ, s

t−1, s̃t−1) +∆bt(θ, s
t−1, s̃t−1)

]
=

T∑
t=1

∑
s̃t−1

∑
s̃t

π(s̃t−1, s̃t)m0→t(s̃
t−1, s̃t)

[(
Dt(s̃

t−1, s̃t) + pt(s̃
t−1, s̃t)

)
∆kt(θ, s

t−1, s̃t−1)

+∆bt(θ, s
t−1, s̃t−1)

]
=

T∑
t=1

∑
s̃t−1

π(s̃t−1)m0→t−1(s̃
t−1)

∑
s̃t

π(s̃t|s̃t−1)mt(s̃t|s̃t−1)
[(
Dt(s̃

t−1, s̃t) + pt(s̃
t−1, s̃t)

)
×∆kt(θ, s

t−1, s̃t−1) +∆bt(θ, s
t−1, s̃t−1)

]
=

T∑
t=1

∑
s̃t−1

π(s̃t−1)m0→t−1(s̃
t−1)

[
pt−1(s̃

t−1)∆kt(θ, s
t−1, s̃t−1) + qt−1(s̃

t−1)∆bt(θ, s
t−1, s̃t−1)

]
where the first equation uses ∆k0(θ) = ∆b0(θ) = 0 and the last one uses the pricing conditions (5).
Similarly, multiplying the third line in (A-42) by π(s̃t)m0→t(s̃

t) and summing over t and s̃t yields

−
T∑

t=0

∑
s̃t

π(s̃t)m0→t(s̃
t)
[
pt(s̃

t)∆kt+1(θ, s
t, s̃t) + qt(s̃

t)∆bt+1(θ, s
t, s̃t)

]
= −

T∑
t=1

∑
s̃t−1

π(s̃t−1)m0→t−1(s̃
t−1)

[
pt−1(s̃

t−1)∆kt(θ, s
t−1, s̃t−1) + qt−1(s̃

t−1)∆bt(θ, s
t−1, s̃t−1)

]
where we adjusted the initial date of summation and used kT+1(θ, s

T ) = bT+1(θ, s
T ) = 0 for all sT .2

Hence, the second and third line cancel and (A-42) becomes

T∑
t=0

∑
s̃t

π(s̃t)m0→t(s̃
t)∆Tt(θ, s

t, s̃t) (A-43)

=
T∑

t=0

∑
s̃t

π(s̃t)m0→t(s̃
t)
[
kt(θ, s

t−1)∆Dt(s
t, s̃t) + xt(θ, s

t)∆pt(s
t, s̃t)− bt+1(θ, s

t)∆qt(s
t, s̃t)

−Ω(θ)∆Ct(s
t, s̃t)

]
where we used Lemma 1. Subtracting the sequential resource constraints under histories st and s̃t yields

∆Ct(s
t, s̃t) = Xt(s

t)∆pt(s
t, s̃t) +Kt(s

t−1)∆Dt(s
t, s̃t)−Bt+1(s

t)∆qt(s
t, s̃t)

+(Dt(s̃
t) + pt(s̃

t))∆Kt(s
t−1, s̃t−1)− pt(s̃

t)∆Kt+1(s
t, s̃t)

+∆Bt(s
t−1, s̃t−1)− qt(s̃

t)∆Bt+1(s
t, s̃t).

2When T =∞ we impose the analogous no-Ponzi and transversality conditions.
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Following the same steps as before yields

T∑
t=0

∑
s̃t

π(s̃t)m0→t(s̃
t)∆Ct(θ, s

t, s̃t)

=
T∑

t=0

∑
s̃t

π(s̃t)m0→t(s̃
t)
[
Xt(s

t)∆pt(s
t, s̃t) +Kt(s

t−1)∆Dt(s
t, s̃t)−Bt+1(s

t)∆qt(s
t, s̃t)

]
.

Substituting back in (A-43), we obtain Proposition 6.

D.4. Proof of Corollary 4

Using equation (1) in the paper, returns remains unchanged when Rt+1 = (Dt+1 + pt+1)/pt =
(Dt+1 + pt+1)/pt =Rt+1. Using that Dt =Dt +∆Dt and pt = pt +∆pt, this happens when:

∆Dt+1 +∆pt+1

∆pt
=

Dt+1 + pt+1

pt
for all t. (A-44)

Under condition (A-44), we have

T∑
t=0

R
−1

0→t∆Tt(θ) =
T∑

t=0

R
−1

0→t[kt(θ)(∆pt +∆Dt)− kt+1(θ)∆pt −Ω(θ)(Kt(∆pt +∆Dt)−Kt+1∆pt)]

=
T∑

t=0

R
−1

0→t[kt(θ)−Ω(θ)Kt](∆pt +∆Dt)−
T∑

t=0

R
−1

0→t[kt+1(θ)−Ω(θ)Kt+1]∆pt

=
T∑

t=0

R
−1

0→t [kt(θ)−Ω(θ)Kt] (∆pt +∆Dt)

−
T∑

t=0

R
−1

0→t [kt+1(θ)−Ω(θ)Kt+1]
pt

Dt+1 + pt+1

(∆pt+1 +∆Dt+1) by (A-44)

=
T∑

t=0

R
−1

0→t [kt(θ)−Ω(θ)Kt] (∆pt +∆Dt)

−
T∑

t=0

R
−1

0→t+1 [kt+1(θ)−Ω(θ)Kt+1] (∆pt+1 +∆Dt+1)

=
T∑

t=0

R
−1

0→t [kt(θ)−Ω(θ)Kt] (∆pt +∆Dt)−
T+1∑
t=1

R
−1

0→t [kt(θ)−Ω(θ)Kt] (∆pt +∆Dt)

= [k0(θ)−Ω(θ)K0] (∆p0 +∆D0)−R
−1

0→T+1 [kT+1(θ)−Ω(θ)KT+1] (∆pT+1 +∆DT+1)

= [k0(θ)−Ω(θ)K0]∆p0

since the last term vanishes and ∆D0 = 0.

D. APPENDIX FOR SECTION 6

D.1. Proof of Equation (30)

The investor’s Euler equation under preferences (27) is:

c0(θ)
−1/σ = βRc1(θ)

−1/σ
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with R=D/p. Since it holds for all investors, it aggregates to

C1 =

(
β
D

p

)σ

C0.

Moreover, integrating the budget constraints (14) and (15) in the paper across investors and using the mar-
ket clearing condition (29), we obtain C0 = Y0 and C1 = Y1 +DK in the closed economy. Substituting
back in the aggregate Euler equation, the equilibrium asset price p∗ must satisfy

Y1 +DK =

(
β
D

p∗

)σ

Y0,

which can be rearranged to deliver equation (30).

D.2. Proof of Proposition 7

First observe that, by Lemma 1, the optimal consumption allocation still satisfies ct(θ) = Ω(θ)Ct,
t = 0,1. Since C0 = Y0 and C1 = Y1 +DK in the closed economy and we hold both dividends and
the aggregate endowment fixed, this immediately implies that no investor’s consumption is changing in
response to the asset price change ∆p∗, so ct(θ) = ct(θ) for all θ, t= 0,1. By the second-period budget
constraint (23) and the normalization T1(θ) = 0, this implies in turn that x(θ) = x(θ) for all θ. The result
then follows from Proposition 1 and the fact that ∆D = 0 and X =K0 −K1 = 0.

D.3. Proof of Proposition 8

Subtract an investor’s budget constraints under the old and new prices in period 0:

c0(θ)− c0(θ) + q(b(θ)− b(θ))

=px(θ)− px(θ)− (χ(x(θ))− χ(x(θ)))− (T0(θ)− T 0(θ))

=(p− p)x(θ) + p(x(θ)− x(θ))− (χ(x(θ))− χ(x(θ)))− (T0(θ)− T 0(θ))

and in period 1:

c1(θ)− c1(θ) =D(θ)(x(θ)− x(θ)) + b(θ)− b(θ)

We eliminate b(θ)− b(θ) by substituting the latter into the former:

c0(θ)− c0(θ) + q(c1(θ)− c1(θ)) + qD(θ)(x(θ)− x(θ))

= (p− p)x(θ) + p(x(θ)− x(θ))− (χ(x(θ))− χ(x(θ)))− (T0(θ)− T 0(θ))

Rearranging and using equation (31) in the paper yields

c0(θ)− c0(θ) + q(c1(θ)− c1(θ))− χ′(x(θ))(x(θ)− x(θ))

= (p− p)x(θ)− (χ(x(θ))− χ(x(θ)))− (T0(θ)− T 0(θ))

The second-order Taylor approximation for χ(x) around the point x(θ) is:

χ(x(θ))− χ(x(θ))≈ χ′(x(θ))(x(θ)− x(θ)) +
1

2
χ′′(x(θ))(x(θ)− x(θ))2

Substituting this, we obtain

c0(θ)− c0(θ) + q(c1(θ)− c1(θ)) = x(θ)∆p− 1

2
χ′′(x(θ))(∆x(θ))2 − (T0(θ)− T 0(θ)) (A-45)

where ∆x(θ)≡ x(θ)− x(θ).
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Since the aggregate resource constraint (33) takes the same form as (19), the Pareto problem (21)
subject to (33) still implies ct(θ) = Ω(θ)Ct, t= 0,1 by Lemma 1. Hence, (A-45) can be written as

∆T0(θ) = x(θ)∆p− 1

2
χ′′(x(θ))(∆x(θ))2 −Ω(θ)

[
C0 −C0 + q(C1 −C1)

]
Integrating (A-45) across all investors implies

C0 −C0 + q(C1 −C1) =X∆p− 1

2

∫
χ′′(x(θ))∆x(θ)2dF (θ)

and substituting this back delivers Proposition 8.

F. WEALTH TAXES AS TAXES ON PRESUMPTIVE INCOME

This appendix shows why taxing fluctuating wealth market values based on an analogy to a tax on
“presumptive income” is problematic. The following simple numerical example illustrates that actual
and presumptive income diverge whenever asset valuations are not exclusively driven by cash flows.

Consider an investor with an asset (e.g. a private business) initially worth $100m which generates a
dividend income of $5m and which is subject to a 2% wealth tax of $2m. In the notation of equation (1)
in the paper, Dt and pt are initially fixed at D and p with an asset return R− 1 =D/p= 5%. The asset
value then jumps up permanently by a factor two to p= 2p= $200m so that also the investor’s wealth
tax liability doubles to $4m. The key question is what happens to the investor’s presumptive versus actual
income.

Suppose first that the increased asset value is exclusively due to higher cashflows, i.e. dividend in-
come also doubles to D = $10m (Special Case 2). From equation (1), the asset return remains constant
at D/p = $10m/$200m = 5% and therefore the increase in presumptive income exactly matches the
increase in actual income. However, in all other cases in which dividends increase by less than a factor of
two, this is no longer true: actual income increases by less than presumptive income. The problem is that
it is incorrect to apply the same constant 5% presumed return to the new valuation of p=$200m because
the true return to wealth D/p falls. In the extreme case in which dividend income remains fixed (Special
Case 1), presumptive income doubles to 5%×$200m= $10m while actual income is unchanged at $5m.
The unchanged dividend income corresponds to a lower return to wealth of only R− 1 =D/p= 2.5%
so the correct income calculation would have been 2.5% × $200m = $5m rather than the (incorrect)
presumptive income calculation of 5%× $200m= $10m. Thus “presumptive income” is overestimated
and wealth taxes redistribute suboptimally away from Special Case 2.
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